Mechanistic insights of surface OH* modulation on methanol production with CO2 hydrogenation by iron-based catalyst

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-10-11 DOI:10.1016/j.mcat.2024.114599
Fugui He , Xiangbin Kong , Tong Zhang , Yongning Yuan , Jianli Zhang , Xinhua Gao , Yurong He , Tiansheng Zhao
{"title":"Mechanistic insights of surface OH* modulation on methanol production with CO2 hydrogenation by iron-based catalyst","authors":"Fugui He ,&nbsp;Xiangbin Kong ,&nbsp;Tong Zhang ,&nbsp;Yongning Yuan ,&nbsp;Jianli Zhang ,&nbsp;Xinhua Gao ,&nbsp;Yurong He ,&nbsp;Tiansheng Zhao","doi":"10.1016/j.mcat.2024.114599","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of CO<sub>2</sub> into high-value-added chemicals via the Fischer-Tropsch Synthesis (FTS) reaction has gathered a lot of attention. The surface oxygenation environment is a significant factor affecting the catalyst performance. In this work, spin-polarized density-functional theory calculations have been used to investigate the adsorption and reactions of CO<sub>2</sub> and H to generate CH<sub>4</sub> and CH<sub>3</sub>OH on Fe<sub>5</sub>C<sub>2</sub>(510) surfaces with varying OH* coverage. On the pure Fe<sub>5</sub>C<sub>2</sub>(510) surface, CO<sub>2</sub> preferentially dissociates via direct dissociation, and the major C<sub>1</sub> species generated is CH<sub>4</sub>. At low OH* coverage, the preferential pathway for CO<sub>2</sub> dissociation changes from direct dissociation to the H-assisted route by the formation of COOH*. The major C<sub>1</sub> product of the reaction in this state is transferred to CH<sub>3</sub>OH. In addition, CO<sub>2</sub> hydrogenation reactions are facilitated by the OH* species. At high OH coverage, CO<sub>2</sub> preferentially dissociates through the HCOO* intermediates. However, it appears that the CO<sub>2</sub> hydrogenation reaction activity is suppressed. The results demonstrate that maintaining the surface environment with OH* and H* could be an indispensable measure to obtain the target product in the iron-based CO<sub>2</sub> Fischer-Tropsch Synthesis system.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114599"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007818","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of CO2 into high-value-added chemicals via the Fischer-Tropsch Synthesis (FTS) reaction has gathered a lot of attention. The surface oxygenation environment is a significant factor affecting the catalyst performance. In this work, spin-polarized density-functional theory calculations have been used to investigate the adsorption and reactions of CO2 and H to generate CH4 and CH3OH on Fe5C2(510) surfaces with varying OH* coverage. On the pure Fe5C2(510) surface, CO2 preferentially dissociates via direct dissociation, and the major C1 species generated is CH4. At low OH* coverage, the preferential pathway for CO2 dissociation changes from direct dissociation to the H-assisted route by the formation of COOH*. The major C1 product of the reaction in this state is transferred to CH3OH. In addition, CO2 hydrogenation reactions are facilitated by the OH* species. At high OH coverage, CO2 preferentially dissociates through the HCOO* intermediates. However, it appears that the CO2 hydrogenation reaction activity is suppressed. The results demonstrate that maintaining the surface environment with OH* and H* could be an indispensable measure to obtain the target product in the iron-based CO2 Fischer-Tropsch Synthesis system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁基催化剂表面 OH* 调制对二氧化碳加氢制甲醇的机理启示
通过费托合成(FTS)反应将二氧化碳转化为高附加值化学品已引起广泛关注。表面含氧环境是影响催化剂性能的一个重要因素。在这项研究中,我们利用自旋极化密度泛函理论计算研究了 CO2 和 H 在不同 OH* 覆盖率的 Fe5C2(510) 表面的吸附和反应,以生成 CH4 和 CH3OH。在纯净的 Fe5C2(510) 表面上,CO2 优先通过直接解离,生成的主要 C1 物种是 CH4。当 OH* 覆盖率较低时,CO2 的优先解离途径由直接解离变为 H 辅助途径,形成 COOH*。在这种状态下,反应的主要 C1 产物转化为 CH3OH。此外,OH* 物种也促进了 CO2 加氢反应。在 OH 覆盖率较高的情况下,CO2 会优先通过 HCOO* 中间产物解离。不过,CO2 加氢反应的活性似乎受到了抑制。结果表明,在铁基 CO2 费托合成系统中,保持表面环境中的 OH* 和 H* 是获得目标产物不可或缺的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Kinetic study of the double dehydration of sorbitol into isosorbide over commercial sulfonic acid resin Oxidation of benzyl alcohol derivatives into carboxylic acids with a new Acetobacter malorum strain: boosting the productivity in a continuous flow system Direct and selective oxidation of methane into methanol over Cu/Fe-containing zeolites First-principles investigation of novel direct-Z ZnS/ZrS2 heterojunction: Electronic properties and photocatalytic potential Enhanced activity for producing CO2-based polyols enabled by Zn-Co DMC/c-CTA catalytic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1