HPIDN: A Hierarchical prior-guided iterative denoising network with global–local fusion for enhancing low-dose CT images

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-10-01 DOI:10.1016/j.jvcir.2024.104297
Xiuya Shi , Yi Yang , Hao Liu , Litai Ma , Zhibo Zhao , Chao Ren
{"title":"HPIDN: A Hierarchical prior-guided iterative denoising network with global–local fusion for enhancing low-dose CT images","authors":"Xiuya Shi ,&nbsp;Yi Yang ,&nbsp;Hao Liu ,&nbsp;Litai Ma ,&nbsp;Zhibo Zhao ,&nbsp;Chao Ren","doi":"10.1016/j.jvcir.2024.104297","DOIUrl":null,"url":null,"abstract":"<div><div>Low-dose computed tomography (LDCT) is an emerging medical diagnostic tool that reduces radiation exposure but suffers from noise retention. Current CNN-based LDCT denoising algorithms struggle to capture comprehensive global representations, impacting diagnostic accuracy. To address this, we propose a novel Hierarchical Prior-guided Iterative Denoising Network (HPIDN) for LDCT images, consisting of two main modules: the Dynamic Feature Extraction and Fusion Module (DFEFM) and the Feature-domain Iterative Denoising Module (FIDM). DFEFM dynamically captures a comprehensive representation, encompassing detailed local features in intra-relationships and complex global features in inter-relationships. It effectively guides the multi-stage iterative denoising process. FIDM hierarchically fuses the prior with image features from DFEFM by using the dual-domain attention fusion sub-network (DAFSN), enhancing denoising robustness and adaptability. This yields higher-quality images with reduced noise artifacts. Extensive experiments on the Mayo and ELCAP Datasets demonstrate the superior performance of our method quantitatively and qualitatively, improving diagnostic accuracy of lung diseases.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104297"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002530","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dose computed tomography (LDCT) is an emerging medical diagnostic tool that reduces radiation exposure but suffers from noise retention. Current CNN-based LDCT denoising algorithms struggle to capture comprehensive global representations, impacting diagnostic accuracy. To address this, we propose a novel Hierarchical Prior-guided Iterative Denoising Network (HPIDN) for LDCT images, consisting of two main modules: the Dynamic Feature Extraction and Fusion Module (DFEFM) and the Feature-domain Iterative Denoising Module (FIDM). DFEFM dynamically captures a comprehensive representation, encompassing detailed local features in intra-relationships and complex global features in inter-relationships. It effectively guides the multi-stage iterative denoising process. FIDM hierarchically fuses the prior with image features from DFEFM by using the dual-domain attention fusion sub-network (DAFSN), enhancing denoising robustness and adaptability. This yields higher-quality images with reduced noise artifacts. Extensive experiments on the Mayo and ELCAP Datasets demonstrate the superior performance of our method quantitatively and qualitatively, improving diagnostic accuracy of lung diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPIDN:分层先验引导迭代去噪网络与全局-局部融合,用于增强低剂量 CT 图像
低剂量计算机断层扫描(LDCT)是一种新兴的医疗诊断工具,它能减少辐射暴露,但存在噪声滞留问题。目前基于 CNN 的 LDCT 去噪算法很难捕捉到全面的全局表征,从而影响了诊断的准确性。为了解决这个问题,我们提出了一种用于 LDCT 图像的新型分层先验指导迭代去噪网络(HPIDN),它由两个主要模块组成:动态特征提取与融合模块(DFEFM)和特征域迭代去噪模块(FIDM)。动态特征提取和融合模块(DFEFM)可动态捕捉全面的表征,包括内部关系中详细的局部特征和相互关系中复杂的全局特征。它能有效地指导多阶段迭代去噪过程。FIDM 通过使用双域注意力融合子网络(DAFSN),将先验值与来自 DFEFM 的图像特征进行分层融合,从而增强了去噪的鲁棒性和适应性。这将产生更高质量的图像,并减少噪声伪影。在梅奥数据集和 ELCAP 数据集上进行的大量实验表明,我们的方法在定量和定性方面都具有卓越的性能,提高了肺部疾病的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1