Oxygen evolution over Fe1/NiSe2 single-atom electrocatalyst: The role of thermal-electrical cascade and surface reconstruing

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-10-04 DOI:10.1016/j.mcat.2024.114596
Ju Wang , Yusheng Liu , Zhaoxu Wang , Jia Wang , Wenyou Zhu , Wenchang Zhuang , Lin Tian
{"title":"Oxygen evolution over Fe1/NiSe2 single-atom electrocatalyst: The role of thermal-electrical cascade and surface reconstruing","authors":"Ju Wang ,&nbsp;Yusheng Liu ,&nbsp;Zhaoxu Wang ,&nbsp;Jia Wang ,&nbsp;Wenyou Zhu ,&nbsp;Wenchang Zhuang ,&nbsp;Lin Tian","doi":"10.1016/j.mcat.2024.114596","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen evolution reaction (OER) in water electrolysis is a tough challenge. Here we report the thermally activated on-surface oxygen evolution at nickel diselenide under alkaline conditions, specifically focusing on the (101) and (100) facets supported with Fe single-atom electrocatalysts. Assisted by heat, the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) and (100) facets demonstrate highly efficient activity for oxygen evolution at pH = 14. First-principles calculations and AIMD simulations illustrate excellent electrical conductivity and thermal stability of the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) and (100) facets, as well as provide a promising understanding of electron transports among the oxygen-containing active species and the electrocatalysts during thermal-electrical cascade of OER under alkaline conditions. The enhanced OER performance depends on the co-adsorbate combinations: *O<sub>(Fe-Se</sub><sup>Ⅰ</sup><sub>)</sub>-*OH<sub>(Se</sub><sup>Ⅱ</sup><sub>)</sub> and *O<sub>(Fe-Se</sub><sup>Ⅰ</sup><sub>)</sub>-*OH<sub>(Ni)</sub> at the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) facet, whose adsorption behaviors lead to self-activated surface reconstruing. Impressively, the affinity of the key intermediates at the potential-determining steps of OER: *O<sub>(Fe-Se</sub><sup>Ⅰ</sup><sub>)</sub> at the Fe<sub>1</sub>/NiSe<sub>2</sub>(101) facet, *O<sub>(Fe)</sub> and *OOH<sub>(Fe)</sub> at the Fe<sub>1</sub>/NiSe<sub>2</sub>(100) facet, is optimized by such self-activated surface reconstruing.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114596"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007788","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen evolution reaction (OER) in water electrolysis is a tough challenge. Here we report the thermally activated on-surface oxygen evolution at nickel diselenide under alkaline conditions, specifically focusing on the (101) and (100) facets supported with Fe single-atom electrocatalysts. Assisted by heat, the Fe1/NiSe2(101) and (100) facets demonstrate highly efficient activity for oxygen evolution at pH = 14. First-principles calculations and AIMD simulations illustrate excellent electrical conductivity and thermal stability of the Fe1/NiSe2(101) and (100) facets, as well as provide a promising understanding of electron transports among the oxygen-containing active species and the electrocatalysts during thermal-electrical cascade of OER under alkaline conditions. The enhanced OER performance depends on the co-adsorbate combinations: *O(Fe-Se)-*OH(Se) and *O(Fe-Se)-*OH(Ni) at the Fe1/NiSe2(101) facet, whose adsorption behaviors lead to self-activated surface reconstruing. Impressively, the affinity of the key intermediates at the potential-determining steps of OER: *O(Fe-Se) at the Fe1/NiSe2(101) facet, *O(Fe) and *OOH(Fe) at the Fe1/NiSe2(100) facet, is optimized by such self-activated surface reconstruing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe1/NiSe2单原子电催化剂上的氧进化:热电级联和表面重构的作用
水电解中的氧进化反应(OER)是一项艰巨的挑战。在此,我们报告了二硒化镍在碱性条件下的热激活表面氧演化,特别关注了由铁单原子电催化剂支撑的 (101) 和 (100) 面。在热的辅助下,Fe1/NiSe2(101)和(100)面在 pH = 14 时表现出高效的氧进化活性。第一性原理计算和 AIMD 模拟表明,Fe1/NiSe2(101) 和 (100) 面具有出色的导电性和热稳定性,并为理解碱性条件下热-电级联 OER 过程中含氧活性物种和电催化剂之间的电子传输提供了前景广阔的思路。增强的 OER 性能取决于共吸附剂组合:Fe1/NiSe2(101)面上的*O(Fe-SeⅠ)-*OH(SeⅡ)和*O(Fe-SeⅠ)-*OH(Ni)的吸附行为导致了自激活表面重构。令人印象深刻的是,在 OER 的电位决定步骤中,关键中间产物的亲和性:Fe1/NiSe2(101)面上的*O(Fe-SeⅠ)、Fe1/NiSe2(100)面上的*O(Fe)和*OOH(Fe)通过这种自激活表面重构得到了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid Spiro-linked hanging group cobalt phthalocyanine for CO2-to-methanol electrocatalysis unveiled by grand canonical density functional theory On the Mechanism of Acrylate and Propionate Silyl Esters Synthesis by Ruthenium-Catalyzed Coupling of CO2 with C2H4 in the Presence of Hydrosilanes: Combined Experimental and Computational Investigations Light alkanes dehydrogenation over silica supported gallium catalysts Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1