Xuan Zhao , Qijun Wang , Wei Wang , Xiaolong Chen , Shibao Lu
{"title":"Study on molecular mechanism of intervertebral disc degeneration by single cell hdWGCNA combined with transcriptome sequencing","authors":"Xuan Zhao , Qijun Wang , Wei Wang , Xiaolong Chen , Shibao Lu","doi":"10.1016/j.ncrna.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Intervertebral disc degeneration (IVDD) is one of the important causes of lower back pain, seriously affecting people's health and quality of life. This research employs single-cell analysis to identify the specific cellular subtypes and key regulatory genes associated with IVDD.</div></div><div><h3>Methods</h3><div>We analyzed the single-cell data and screened cells that closely associated with the development of IVDD. The differential expression of feature genes between IVDD and control groups was analyzed. Additionally, drugs and regulatory transcription factors that interact with feature genes were predicted and clinically validated by reverse transcription quantitative real-time PCR (RT-qPCR), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA).</div></div><div><h3>Results</h3><div>Our study identified the Chond2 cell subtype associated with IVDD and selected four feature genes influencing the development of IVDD, namely IGFBP3, ACAN, VAPA and TMEM45A, through the high-dimensional weighted gene co-expression network analysis (hdWGCNA) analysis, least absolute shrinkage and selection operator (LASSO), and random forest (RF). Besides, compared to the MDD group, IGFBP3 and TMEM45A were significantly upregulated in the SDD group, while ACAN and VAPA showed no significant difference between the two groups. ELISA testing revealed a positive correlation between IGFBP3 concentration and the grading of IVDD. Furthermore, Celecoxib may be used to treat IVDD by inhibiting IGFBP3.</div></div><div><h3>Conclusion</h3><div>Our study identified the Chond2 cell subtype associated with IVDD and selected four feature genes influencing the development of IVDD, namely IGFBP3, ACAN, VAPA and TMEM45A. Our findings establish a robust theoretical foundation for the clinical diagnosis and treatment of IVDD patients.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"10 ","pages":"Pages 177-191"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054024001379","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Intervertebral disc degeneration (IVDD) is one of the important causes of lower back pain, seriously affecting people's health and quality of life. This research employs single-cell analysis to identify the specific cellular subtypes and key regulatory genes associated with IVDD.
Methods
We analyzed the single-cell data and screened cells that closely associated with the development of IVDD. The differential expression of feature genes between IVDD and control groups was analyzed. Additionally, drugs and regulatory transcription factors that interact with feature genes were predicted and clinically validated by reverse transcription quantitative real-time PCR (RT-qPCR), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA).
Results
Our study identified the Chond2 cell subtype associated with IVDD and selected four feature genes influencing the development of IVDD, namely IGFBP3, ACAN, VAPA and TMEM45A, through the high-dimensional weighted gene co-expression network analysis (hdWGCNA) analysis, least absolute shrinkage and selection operator (LASSO), and random forest (RF). Besides, compared to the MDD group, IGFBP3 and TMEM45A were significantly upregulated in the SDD group, while ACAN and VAPA showed no significant difference between the two groups. ELISA testing revealed a positive correlation between IGFBP3 concentration and the grading of IVDD. Furthermore, Celecoxib may be used to treat IVDD by inhibiting IGFBP3.
Conclusion
Our study identified the Chond2 cell subtype associated with IVDD and selected four feature genes influencing the development of IVDD, namely IGFBP3, ACAN, VAPA and TMEM45A. Our findings establish a robust theoretical foundation for the clinical diagnosis and treatment of IVDD patients.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.