{"title":"Shape optimization with level set-based method using a reaction diffusion equation for 2D sound barrier","authors":"Qiuzi Yu , Fang Zhang , Toshiro Matsumoto , Haibo Chen","doi":"10.1016/j.enganabound.2024.105978","DOIUrl":null,"url":null,"abstract":"<div><div>A level set-based method using a reaction diffusion equation is applied for optimization problems of two dimensional (2D) sound barriers. The level set method is employed to implicitly represent the sound barrier structure, which distinguishes the material and void domains by the value of the level set function. The boundary element method is employed to solve acoustic problems governed by Helmholtz equation. Topological derivatives are computed by the boundary integral equation combined with the adjoint variable method. The distribution of level set function is iteratively updated based on the reaction diffusion equation to find the optimal structure. For the existent floating scatterers in the optimization process and the sharp and narrow parts on the surface of the sound barrier, we propose a filtering algorithm to remove floating scatterers and develop a method to achieve a smooth surface of the sound barrier. The shape optimization of sound barriers is achieved using these techniques, integrating the level set-based topology optimization method. Numerical tests are provided to demonstrate the validity and effectiveness of the proposed methods.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105978"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095579972400451X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A level set-based method using a reaction diffusion equation is applied for optimization problems of two dimensional (2D) sound barriers. The level set method is employed to implicitly represent the sound barrier structure, which distinguishes the material and void domains by the value of the level set function. The boundary element method is employed to solve acoustic problems governed by Helmholtz equation. Topological derivatives are computed by the boundary integral equation combined with the adjoint variable method. The distribution of level set function is iteratively updated based on the reaction diffusion equation to find the optimal structure. For the existent floating scatterers in the optimization process and the sharp and narrow parts on the surface of the sound barrier, we propose a filtering algorithm to remove floating scatterers and develop a method to achieve a smooth surface of the sound barrier. The shape optimization of sound barriers is achieved using these techniques, integrating the level set-based topology optimization method. Numerical tests are provided to demonstrate the validity and effectiveness of the proposed methods.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.