Tao Wan , Hong Zheng , Wenan Wu , Shanyong Wang , Shuaixing Zhao , Zibo Fan
{"title":"Fully coupled dynamic hydraulic fracturing of saturated porous media based on the numerical manifold method","authors":"Tao Wan , Hong Zheng , Wenan Wu , Shanyong Wang , Shuaixing Zhao , Zibo Fan","doi":"10.1016/j.enganabound.2024.105987","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient simulation of dynamic hydraulic fracturing of the saturated porous media has always been a pivotal topic in the oil and gas extraction. Leveraging the Numerical Manifold Method (NMM) and its inherent cutting technique, this paper proposes a fully coupled hydraulic fracturing model based on the <strong><em>u</em></strong>-<em>p</em> format, which incorporates the overall momentum balance and continuity conditions in both porous media and fractures. NMM approximations and the Newmark implicit algorithm are employed respectively to discretize the spatial and time domains, and the resulting system is solved based on the Newton-Raphson method. By imposing flow boundary conditions on the fracture surfaces, the present model accounts for fluid loss without introducing extra filtration coefficients. Using the Mohr-Coulomb-based LT criterion and the maximum circumferential stress criterion to determine whether crack propagation has occurred and crack propagation direction respectively, the present model is capable of simulating initiation and development of multiple cracks under hydraulic stimulations. Through modeling the KGD hydraulic fracturing, hydraulic fracturing of a pre-cracked cubic specimen and fracture interference phenomena during expansion of multiple fracture ports of a single injection well, accuracy and effectiveness of the model are validated.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 105987"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004600","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and efficient simulation of dynamic hydraulic fracturing of the saturated porous media has always been a pivotal topic in the oil and gas extraction. Leveraging the Numerical Manifold Method (NMM) and its inherent cutting technique, this paper proposes a fully coupled hydraulic fracturing model based on the u-p format, which incorporates the overall momentum balance and continuity conditions in both porous media and fractures. NMM approximations and the Newmark implicit algorithm are employed respectively to discretize the spatial and time domains, and the resulting system is solved based on the Newton-Raphson method. By imposing flow boundary conditions on the fracture surfaces, the present model accounts for fluid loss without introducing extra filtration coefficients. Using the Mohr-Coulomb-based LT criterion and the maximum circumferential stress criterion to determine whether crack propagation has occurred and crack propagation direction respectively, the present model is capable of simulating initiation and development of multiple cracks under hydraulic stimulations. Through modeling the KGD hydraulic fracturing, hydraulic fracturing of a pre-cracked cubic specimen and fracture interference phenomena during expansion of multiple fracture ports of a single injection well, accuracy and effectiveness of the model are validated.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.