{"title":"Expected coordinate improvement for high-dimensional Bayesian optimization","authors":"Dawei Zhan","doi":"10.1016/j.swevo.2024.101745","DOIUrl":null,"url":null,"abstract":"<div><div>Bayesian optimization (BO) algorithm is very popular for solving low-dimensional expensive optimization problems. Extending Bayesian optimization to high dimension is a meaningful but challenging task. One of the major challenges is that it is difficult to find good infill solutions as the acquisition functions are also high-dimensional. In this work, we propose the expected coordinate improvement (ECI) criterion for high-dimensional Bayesian optimization. The proposed ECI criterion measures the potential improvement we can get by moving the current best solution along one coordinate. The proposed approach selects the coordinate with the highest ECI value to refine in each iteration and covers all the coordinates gradually by iterating over the coordinates. The greatest advantage of the proposed ECI-BO (expected coordinate improvement based Bayesian optimization) algorithm over the standard BO algorithm is that the infill selection problem of the proposed algorithm is always a one-dimensional problem thus can be easily solved. Numerical experiments show that the proposed algorithm can achieve significantly better results than the standard BO algorithm and competitive results when compared with five high-dimensional BOs and six surrogate-assisted evolutionary algorithms. This work provides a simple but efficient approach for high-dimensional Bayesian optimization. A Matlab implementation of our ECI-BO is available at <span><span>https://github.com/zhandawei/Expected_Coordinate_Improvement</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101745"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002839","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian optimization (BO) algorithm is very popular for solving low-dimensional expensive optimization problems. Extending Bayesian optimization to high dimension is a meaningful but challenging task. One of the major challenges is that it is difficult to find good infill solutions as the acquisition functions are also high-dimensional. In this work, we propose the expected coordinate improvement (ECI) criterion for high-dimensional Bayesian optimization. The proposed ECI criterion measures the potential improvement we can get by moving the current best solution along one coordinate. The proposed approach selects the coordinate with the highest ECI value to refine in each iteration and covers all the coordinates gradually by iterating over the coordinates. The greatest advantage of the proposed ECI-BO (expected coordinate improvement based Bayesian optimization) algorithm over the standard BO algorithm is that the infill selection problem of the proposed algorithm is always a one-dimensional problem thus can be easily solved. Numerical experiments show that the proposed algorithm can achieve significantly better results than the standard BO algorithm and competitive results when compared with five high-dimensional BOs and six surrogate-assisted evolutionary algorithms. This work provides a simple but efficient approach for high-dimensional Bayesian optimization. A Matlab implementation of our ECI-BO is available at https://github.com/zhandawei/Expected_Coordinate_Improvement.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.