A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-10-11 DOI:10.1016/j.swevo.2024.101748
Yang Chen , Dechang Pi , Shengxiang Yang , Yue Xu , Bi Wang , Yintong Wang
{"title":"A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing","authors":"Yang Chen ,&nbsp;Dechang Pi ,&nbsp;Shengxiang Yang ,&nbsp;Yue Xu ,&nbsp;Bi Wang ,&nbsp;Yintong Wang","doi":"10.1016/j.swevo.2024.101748","DOIUrl":null,"url":null,"abstract":"<div><div>Disasters in remote areas often cause damage to communication facilities, which presents significant challenges for rescue efforts. As flexible mobile devices, unmanned aerial vehicles (UAVs) can provide temporary network services to address this issue. This paper studies the use of UAVs as mobile base stations to offer offload computing services for disaster relief devices in affected areas. To ensure reliable communication between disaster relief devices and UAVs, we construct a multi-UAV-assisted mobile edge computing (MEC) system with the objective of minimizing system energy consumption. Inspired by swarm intelligence principles, we propose a multi-strategy optimizer (MSO) that defines various population search functions and employs superior neighborhood methods for population updates. Experimental results demonstrate that MSO achieves superior system energy efficiency and exhibits greater stability compared to several state-of-the-art swarm intelligence algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101748"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002864","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Disasters in remote areas often cause damage to communication facilities, which presents significant challenges for rescue efforts. As flexible mobile devices, unmanned aerial vehicles (UAVs) can provide temporary network services to address this issue. This paper studies the use of UAVs as mobile base stations to offer offload computing services for disaster relief devices in affected areas. To ensure reliable communication between disaster relief devices and UAVs, we construct a multi-UAV-assisted mobile edge computing (MEC) system with the objective of minimizing system energy consumption. Inspired by swarm intelligence principles, we propose a multi-strategy optimizer (MSO) that defines various population search functions and employs superior neighborhood methods for population updates. Experimental results demonstrate that MSO achieves superior system energy efficiency and exhibits greater stability compared to several state-of-the-art swarm intelligence algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多无人机辅助移动边缘计算能量最小化的多策略优化器
偏远地区发生灾害时,通信设施往往会遭到破坏,这给救援工作带来了巨大挑战。作为灵活的移动设备,无人飞行器(UAV)可以提供临时网络服务来解决这一问题。本文研究利用无人飞行器作为移动基站,为灾区的救灾设备提供卸载计算服务。为确保救灾设备与无人机之间的可靠通信,我们构建了一个多无人机辅助移动边缘计算(MEC)系统,目标是最大限度地降低系统能耗。受蜂群智能原理的启发,我们提出了一种多策略优化器(MSO),它定义了各种种群搜索函数,并采用卓越的邻域方法进行种群更新。实验结果表明,与几种最先进的群智能算法相比,MSO 实现了更高的系统能效,并表现出更强的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
An ensemble reinforcement learning-assisted deep learning framework for enhanced lung cancer diagnosis Multi-population coevolutionary algorithm for a green multi-objective flexible job shop scheduling problem with automated guided vehicles and variable processing speed constraints A knowledge-driven many-objective algorithm for energy-efficient distributed heterogeneous hybrid flowshop scheduling with lot-streaming Balancing heterogeneous assembly line with multi-skilled human-robot collaboration via Adaptive cooperative co-evolutionary algorithm A collaborative-learning multi-agent reinforcement learning method for distributed hybrid flow shop scheduling problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1