Intuitive-K-prototypes: A mixed data clustering algorithm with intuitionistic distribution centroid

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2024-10-05 DOI:10.1016/j.patcog.2024.111062
Hongli Wang , Jusheng Mi
{"title":"Intuitive-K-prototypes: A mixed data clustering algorithm with intuitionistic distribution centroid","authors":"Hongli Wang ,&nbsp;Jusheng Mi","doi":"10.1016/j.patcog.2024.111062","DOIUrl":null,"url":null,"abstract":"<div><div>Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines intuitionistic distribution centroid for categorical attributes. In our approach, a heuristic search for initial prototypes is performed. Then, we combine the mean of numerical attributes and intuitionistic distribution centroid to represent the cluster prototype. In addition, intra-cluster complexity and inter-cluster similarity are used to adjust attribute weights, with higher priority given to those with lower complexity and similarity. The membership and non-membership distance are calculated using the intuitionistic distribution centroid. These distances are then combined parametrically to obtain the composite distance. The algorithm is judged for its clustering effectiveness on the real UCI data set, and the results show that the proposed algorithm outperforms the traditional clustering algorithm in most cases.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"158 ","pages":"Article 111062"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008136","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Data sets are usually mixed with numerical and categorical attributes in the real world. Data mining of mixed data makes a lot of sense. This paper proposes an Intuitive-K-prototypes clustering algorithm with improved prototype representation and attribute weights. The proposed algorithm defines intuitionistic distribution centroid for categorical attributes. In our approach, a heuristic search for initial prototypes is performed. Then, we combine the mean of numerical attributes and intuitionistic distribution centroid to represent the cluster prototype. In addition, intra-cluster complexity and inter-cluster similarity are used to adjust attribute weights, with higher priority given to those with lower complexity and similarity. The membership and non-membership distance are calculated using the intuitionistic distribution centroid. These distances are then combined parametrically to obtain the composite distance. The algorithm is judged for its clustering effectiveness on the real UCI data set, and the results show that the proposed algorithm outperforms the traditional clustering algorithm in most cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直观-K-原型:带有直观分布中心点的混合数据聚类算法
在现实世界中,数据集通常混合了数字和分类属性。对混合数据进行数据挖掘非常有意义。本文提出了一种改进了原型表示和属性权重的直观 K 原型聚类算法。所提出的算法为分类属性定义了直观分布中心点。在我们的方法中,会对初始原型进行启发式搜索。然后,我们结合数值属性的平均值和直觉分布中心点来表示聚类原型。此外,聚类内部复杂性和聚类间相似性也用于调整属性权重,复杂性和相似性较低的属性优先级较高。使用直观分布中心点计算成员和非成员距离。然后将这些距离进行参数组合,得到复合距离。在真实的 UCI 数据集上对该算法的聚类效果进行了评判,结果表明,所提出的算法在大多数情况下都优于传统的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Learning accurate and enriched features for stereo image super-resolution Semi-supervised multi-view feature selection with adaptive similarity fusion and learning DyConfidMatch: Dynamic thresholding and re-sampling for 3D semi-supervised learning CAST: An innovative framework for Cross-dimensional Attention Structure in Transformers Embedded feature selection for robust probability learning machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1