Reliability modeling for perception systems in autonomous vehicles: A recursive event-triggering point process approach

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY Transportation Research Part C-Emerging Technologies Pub Date : 2024-10-05 DOI:10.1016/j.trc.2024.104868
Fenglian Pan , Yinwei Zhang , Jian Liu , Larry Head , Maria Elli , Ignacio Alvarez
{"title":"Reliability modeling for perception systems in autonomous vehicles: A recursive event-triggering point process approach","authors":"Fenglian Pan ,&nbsp;Yinwei Zhang ,&nbsp;Jian Liu ,&nbsp;Larry Head ,&nbsp;Maria Elli ,&nbsp;Ignacio Alvarez","doi":"10.1016/j.trc.2024.104868","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring the reliability of sensor-fusion-based perception systems is crucial for the safe deployment of autonomous vehicles. Such systems function through a sequence of interconnected stages, where errors in upstream stages may propagate to downstream stages and trigger additional errors. The cross-stage error propagation conceptually exists and makes errors in different stages, not independent, posing model challenges, estimation challenges, and data challenges for reliability modeling. The existing methods cannot be applied to address all these challenges. Thus, this paper presents a recursive event-triggering point process to explicitly consider the error propagation based on the simulated data. The data are simulated from a proposed error injection framework, which can generate various errors from a sequence of interconnected stages in a perception system. The latent and probabilistic error propagation information is incorporated into a modified expectation–maximization (EM) algorithm for parameter estimation. The numerical and physics-based simulation case studies demonstrate the prediction accuracy and interpretability of the proposed modeling methodology.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003899","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring the reliability of sensor-fusion-based perception systems is crucial for the safe deployment of autonomous vehicles. Such systems function through a sequence of interconnected stages, where errors in upstream stages may propagate to downstream stages and trigger additional errors. The cross-stage error propagation conceptually exists and makes errors in different stages, not independent, posing model challenges, estimation challenges, and data challenges for reliability modeling. The existing methods cannot be applied to address all these challenges. Thus, this paper presents a recursive event-triggering point process to explicitly consider the error propagation based on the simulated data. The data are simulated from a proposed error injection framework, which can generate various errors from a sequence of interconnected stages in a perception system. The latent and probabilistic error propagation information is incorporated into a modified expectation–maximization (EM) algorithm for parameter estimation. The numerical and physics-based simulation case studies demonstrate the prediction accuracy and interpretability of the proposed modeling methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动驾驶汽车感知系统的可靠性建模:递归事件触发点过程方法
确保基于传感器融合的感知系统的可靠性对于自动驾驶汽车的安全部署至关重要。此类系统通过一系列相互关联的阶段来运行,上游阶段的错误可能会传播到下游阶段并引发更多错误。跨阶段错误传播在概念上是存在的,这使得不同阶段的错误并不独立,给可靠性建模带来了模型挑战、估计挑战和数据挑战。现有方法无法应对所有这些挑战。因此,本文提出了一种递归事件触发点过程,在模拟数据的基础上明确考虑误差传播。模拟数据来自一个拟议的错误注入框架,该框架可从感知系统中一系列相互关联的阶段产生各种错误。潜在和概率误差传播信息被纳入用于参数估计的修正期望最大化(EM)算法。基于数值和物理的模拟案例研究证明了所提出的建模方法的预测准确性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
期刊最新文献
A User-Driven Prioritisation Process implementation and optimisation for ATFM hotspot resolution Scenario-level knowledge transfer for motion planning of autonomous driving via successor representation Pricing for multi-modal pickup and delivery problems with heterogeneous users LFF: An attention allocation-based following behavior framework in lane-free environments T3C: A traffic-communication coupling control approach for autonomous intersection management system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1