Hybrid intelligent algorithm aided energy consumption optimization in smart grid systems with edge computing

Shuangwei Li, Yang Xie, Mingming Shi, Xian Zheng, Yongling Lu
{"title":"Hybrid intelligent algorithm aided energy consumption optimization in smart grid systems with edge computing","authors":"Shuangwei Li,&nbsp;Yang Xie,&nbsp;Mingming Shi,&nbsp;Xian Zheng,&nbsp;Yongling Lu","doi":"10.1016/j.iswa.2024.200444","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid proliferation of smart grid systems necessitates efficient management of energy resources, particularly in the context of mobile edge computing (MEC) networks. This paper presents a novel approach to optimize the energy consumption in smart grid systems with the integration of edge computing, employing a hybrid intelligent algorithm (HIA) empowered by particle swarm optimization (PSO). The primary objective is to enhance the sustainability and operational efficiency of smart grid infrastructures by minimizing the energy consumption in the MEC networks. The proposed HIA utilizes PSO to dynamically allocate computational tasks and manage resources among edge devices based on real-time demand fluctuations. This adaptive approach aims to achieve the optimal load balancing and energy efficiency across the smart grid ecosystem. By leveraging the PSO’s ability to iteratively refine solutions and adapt to changing environmental conditions, the algorithm optimizes the energy consumption while maintaining requisite service levels and reliability. Simulation experiments and case studies validate the effectiveness of the proposed PSO-based HIA in reducing the energy consumption without compromising system other performances. The results demonstrate substantial improvements in the energy efficiency, illustrating the feasibility and benefits of employing intelligent algorithms tailored for edge computing environments within smart grid systems. This research contributes to advancing sustainable smart grid technologies by introducing a robust framework for energy optimization through hybrid intelligent algorithms.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200444"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid proliferation of smart grid systems necessitates efficient management of energy resources, particularly in the context of mobile edge computing (MEC) networks. This paper presents a novel approach to optimize the energy consumption in smart grid systems with the integration of edge computing, employing a hybrid intelligent algorithm (HIA) empowered by particle swarm optimization (PSO). The primary objective is to enhance the sustainability and operational efficiency of smart grid infrastructures by minimizing the energy consumption in the MEC networks. The proposed HIA utilizes PSO to dynamically allocate computational tasks and manage resources among edge devices based on real-time demand fluctuations. This adaptive approach aims to achieve the optimal load balancing and energy efficiency across the smart grid ecosystem. By leveraging the PSO’s ability to iteratively refine solutions and adapt to changing environmental conditions, the algorithm optimizes the energy consumption while maintaining requisite service levels and reliability. Simulation experiments and case studies validate the effectiveness of the proposed PSO-based HIA in reducing the energy consumption without compromising system other performances. The results demonstrate substantial improvements in the energy efficiency, illustrating the feasibility and benefits of employing intelligent algorithms tailored for edge computing environments within smart grid systems. This research contributes to advancing sustainable smart grid technologies by introducing a robust framework for energy optimization through hybrid intelligent algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用边缘计算的智能电网系统中的混合智能算法辅助能耗优化
智能电网系统的迅速普及要求对能源资源进行有效管理,尤其是在移动边缘计算(MEC)网络的背景下。本文采用粒子群优化(PSO)赋予的混合智能算法(HIA),提出了一种优化智能电网系统能源消耗与边缘计算整合的新方法。其主要目标是通过最大限度地降低 MEC 网络的能耗,提高智能电网基础设施的可持续性和运行效率。拟议的 HIA 利用 PSO 根据实时需求波动在边缘设备之间动态分配计算任务和管理资源。这种自适应方法旨在实现整个智能电网生态系统的最佳负载平衡和能效。通过利用 PSO 的迭代改进解决方案和适应不断变化的环境条件的能力,该算法在保持必要的服务水平和可靠性的同时优化了能源消耗。仿真实验和案例研究验证了所提出的基于 PSO 的 HIA 在降低能耗而不影响系统其他性能方面的有效性。结果表明,能效有了显著提高,说明了在智能电网系统中采用专为边缘计算环境定制的智能算法的可行性和益处。这项研究通过混合智能算法引入了一个稳健的能源优化框架,为推动可持续智能电网技术的发展做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1