{"title":"Design and implementation of antenna control system for EAST ECRH","authors":"Yu Hua , Handong Xu , Liyuan Zhang , Weiye Xu , Dajun Wu , Xiaoguang Zhang , Long Huang","doi":"10.1016/j.fusengdes.2024.114682","DOIUrl":null,"url":null,"abstract":"<div><div>The antenna system constitutes an essential component of the Electron Cyclotron Resonance Heating (ECRH) system, which is employed to inject high-power millimeter waves precisely to the specific internal resonance layer required for EAST experiments, realizing plasma heating, current driving, and magnetohydrodynamic (MHD) instability control. Therefore, an ECRH antenna control system was designed to fulfill the above requirements. The system employs the NI CompactRIO controller as the lower computer and utilizes LabVIEW as the programming language for software development. This paper decomposes the software architecture into functional modules and elaborates on the servo motor motion control module. Furthermore, the motor servo control system is modeled and simulated in MATLAB/Simulink. Then the response-time testing and position followability testing are carried out on the test bench. The measured response time of the small-angle scanning motion of the SM was less than 50 <span><math><mrow><mi>ms</mi><mo>/</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span>, and the index values for tracking error of the light spots are within the range of 0.1 to 1. The test results demonstrate that the antenna control system exhibits high position control accuracy and excellent response performance, which holds significant application value for the investigation of Experimental Advanced Superconducting Tokamak (EAST) experiments, as well as providing a valuable reference for the development of similar control systems in the future fusion reactors.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005337","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The antenna system constitutes an essential component of the Electron Cyclotron Resonance Heating (ECRH) system, which is employed to inject high-power millimeter waves precisely to the specific internal resonance layer required for EAST experiments, realizing plasma heating, current driving, and magnetohydrodynamic (MHD) instability control. Therefore, an ECRH antenna control system was designed to fulfill the above requirements. The system employs the NI CompactRIO controller as the lower computer and utilizes LabVIEW as the programming language for software development. This paper decomposes the software architecture into functional modules and elaborates on the servo motor motion control module. Furthermore, the motor servo control system is modeled and simulated in MATLAB/Simulink. Then the response-time testing and position followability testing are carried out on the test bench. The measured response time of the small-angle scanning motion of the SM was less than 50 , and the index values for tracking error of the light spots are within the range of 0.1 to 1. The test results demonstrate that the antenna control system exhibits high position control accuracy and excellent response performance, which holds significant application value for the investigation of Experimental Advanced Superconducting Tokamak (EAST) experiments, as well as providing a valuable reference for the development of similar control systems in the future fusion reactors.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.