Design and implementation of antenna control system for EAST ECRH

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Fusion Engineering and Design Pub Date : 2024-10-10 DOI:10.1016/j.fusengdes.2024.114682
Yu Hua , Handong Xu , Liyuan Zhang , Weiye Xu , Dajun Wu , Xiaoguang Zhang , Long Huang
{"title":"Design and implementation of antenna control system for EAST ECRH","authors":"Yu Hua ,&nbsp;Handong Xu ,&nbsp;Liyuan Zhang ,&nbsp;Weiye Xu ,&nbsp;Dajun Wu ,&nbsp;Xiaoguang Zhang ,&nbsp;Long Huang","doi":"10.1016/j.fusengdes.2024.114682","DOIUrl":null,"url":null,"abstract":"<div><div>The antenna system constitutes an essential component of the Electron Cyclotron Resonance Heating (ECRH) system, which is employed to inject high-power millimeter waves precisely to the specific internal resonance layer required for EAST experiments, realizing plasma heating, current driving, and magnetohydrodynamic (MHD) instability control. Therefore, an ECRH antenna control system was designed to fulfill the above requirements. The system employs the NI CompactRIO controller as the lower computer and utilizes LabVIEW as the programming language for software development. This paper decomposes the software architecture into functional modules and elaborates on the servo motor motion control module. Furthermore, the motor servo control system is modeled and simulated in MATLAB/Simulink. Then the response-time testing and position followability testing are carried out on the test bench. The measured response time of the small-angle scanning motion of the SM was less than 50 <span><math><mrow><mi>ms</mi><mo>/</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span>, and the index values for tracking error of the light spots are within the range of 0.1 to 1. The test results demonstrate that the antenna control system exhibits high position control accuracy and excellent response performance, which holds significant application value for the investigation of Experimental Advanced Superconducting Tokamak (EAST) experiments, as well as providing a valuable reference for the development of similar control systems in the future fusion reactors.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005337","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The antenna system constitutes an essential component of the Electron Cyclotron Resonance Heating (ECRH) system, which is employed to inject high-power millimeter waves precisely to the specific internal resonance layer required for EAST experiments, realizing plasma heating, current driving, and magnetohydrodynamic (MHD) instability control. Therefore, an ECRH antenna control system was designed to fulfill the above requirements. The system employs the NI CompactRIO controller as the lower computer and utilizes LabVIEW as the programming language for software development. This paper decomposes the software architecture into functional modules and elaborates on the servo motor motion control module. Furthermore, the motor servo control system is modeled and simulated in MATLAB/Simulink. Then the response-time testing and position followability testing are carried out on the test bench. The measured response time of the small-angle scanning motion of the SM was less than 50 ms/1, and the index values for tracking error of the light spots are within the range of 0.1 to 1. The test results demonstrate that the antenna control system exhibits high position control accuracy and excellent response performance, which holds significant application value for the investigation of Experimental Advanced Superconducting Tokamak (EAST) experiments, as well as providing a valuable reference for the development of similar control systems in the future fusion reactors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为 EAST ECRH 设计和实施天线控制系统
天线系统是电子回旋共振加热(ECRH)系统的重要组成部分,用于向 EAST 实验所需的特定内部共振层精确注入高功率毫米波,实现等离子体加热、电流驱动和磁流体动力学(MHD)不稳定性控制。因此,我们设计了一套 ECRH 天线控制系统来满足上述要求。该系统采用 NI CompactRIO 控制器作为下位机,并使用 LabVIEW 作为软件开发的编程语言。本文将软件结构分解为多个功能模块,并对伺服电机运动控制模块进行了详细阐述。此外,还在 MATLAB/Simulink 中对电机伺服控制系统进行了建模和仿真。然后在试验台上进行了响应时间测试和位置跟随性测试。实测的 SM 小角度扫描运动响应时间小于 50 ms/1∘,光斑跟踪误差指标值在 0.1 至 1 范围内。 测试结果表明,该天线控制系统具有较高的位置控制精度和优异的响应性能,对先进超导托卡马克(EAST)实验的研究具有重要的应用价值,同时也为未来聚变反应堆类似控制系统的开发提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
期刊最新文献
Direct internal recycling fractions approaching unity Experimental study on the critical current in highly flexible REBCO cables under copper tube compaction Parametric study of liquid metal flows in conducting circular ducts in a strong nonuniform magnetic field Thermal hydraulic and material analysis of upgraded flat-type Graphite divertor mock-up for Pakistan Spherical Tokamak (PST) Numerical structural analysis and flow-induced vibration study in support of the design of the EU-DEMO once-through steam generator mock-up for the STEAM experimental facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1