A. Cassaro , C. Pacelli , A. Cemmi , I. Di Sarcina , L. Zucconi , B. Cavalazzi , P. Leo , I. Catanzaro , S. Onofri
{"title":"The effect of ionizing radiation on hydrated fungal cells: Implications for planetary protection and mars habitability","authors":"A. Cassaro , C. Pacelli , A. Cemmi , I. Di Sarcina , L. Zucconi , B. Cavalazzi , P. Leo , I. Catanzaro , S. Onofri","doi":"10.1016/j.icarus.2024.116339","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid water is one of the essential conditions for life as we know it. Its presence has been currently reported beyond Earth. Geological and mineralogical evidence indicates that water once flowed on Mars. The recent discovery of present ice-water on the planet's surface is one of the driving factors for life-detection missions. The highly radiative Martian surface, combined with aqueous thin layers, is prohibitive for the presence of hypothetical forms of terrestrial-like life on the planet. In this context, we examined the survival of hydrated colonies of the Antarctic black fungus <em>Cryomyces antarcticus,</em> which thrives in the extreme environment of McMurdo Dry Valleys in Antarctica, after the exposure to increasing doses of space relevant γ-rays. Results suggest that water significantly reduces the number of survivors at the lowest doses, while at the higher dose (117 kGy) the cumulative damage caused by radiation could no longer be counteracted by dehydration.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"425 ","pages":"Article 116339"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003993","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid water is one of the essential conditions for life as we know it. Its presence has been currently reported beyond Earth. Geological and mineralogical evidence indicates that water once flowed on Mars. The recent discovery of present ice-water on the planet's surface is one of the driving factors for life-detection missions. The highly radiative Martian surface, combined with aqueous thin layers, is prohibitive for the presence of hypothetical forms of terrestrial-like life on the planet. In this context, we examined the survival of hydrated colonies of the Antarctic black fungus Cryomyces antarcticus, which thrives in the extreme environment of McMurdo Dry Valleys in Antarctica, after the exposure to increasing doses of space relevant γ-rays. Results suggest that water significantly reduces the number of survivors at the lowest doses, while at the higher dose (117 kGy) the cumulative damage caused by radiation could no longer be counteracted by dehydration.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.