Volcanomagnetic signals related to the 2021 Tajogaite volcanic eruption in the Cumbre Vieja rift (La Palma, Canary Islands)

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Volcanology and Geothermal Research Pub Date : 2024-10-02 DOI:10.1016/j.jvolgeores.2024.108200
Isabel Blanco-Montenegro , José Arnoso , Nieves Sánchez , Fuensanta G. Montesinos , David Gómez-Ortiz , Iacopo Nicolosi , Emilio Vélez , Maite Benavent
{"title":"Volcanomagnetic signals related to the 2021 Tajogaite volcanic eruption in the Cumbre Vieja rift (La Palma, Canary Islands)","authors":"Isabel Blanco-Montenegro ,&nbsp;José Arnoso ,&nbsp;Nieves Sánchez ,&nbsp;Fuensanta G. Montesinos ,&nbsp;David Gómez-Ortiz ,&nbsp;Iacopo Nicolosi ,&nbsp;Emilio Vélez ,&nbsp;Maite Benavent","doi":"10.1016/j.jvolgeores.2024.108200","DOIUrl":null,"url":null,"abstract":"<div><div>After almost 50 years of quiescence, the Cumbre Vieja rift in La Palma underwent a reactivation process that culminated in the eruption of the Tajogaite volcano from September 19 to December 13, 2021. In July 2021, a magnetic station (CFU) was deployed in the western flank of the Cumbre Vieja rift, 2 km away from the site where the eruptive vents would open two months later. In September 2021, a second magnetic station (SAN) was installed near the southern end of the rift. In this paper we study two months of geomagnetic data at CFU before the eruption and three months of geomagnetic data at SAN during the eruption. The analysis of these time series revealed a magnetic signal at the CFU station with an amplitude of 10 nT and a duration of 10 days by mid-August, one month before the eruption onset. We studied possible correlations with other physical parameters (ground deformation, long-period and very-long-period seismic activity) and concluded that this signal could be related to changes in the magnetization of rocks beneath the volcanic edifice caused by magma intrusion and volcanic/hydrothermal fluids circulation preceding the eruption. At the SAN magnetic station, the time series suggests that a slight decrease in the geomagnetic field could reflect the end of the eruptive process.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108200"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324001926","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

After almost 50 years of quiescence, the Cumbre Vieja rift in La Palma underwent a reactivation process that culminated in the eruption of the Tajogaite volcano from September 19 to December 13, 2021. In July 2021, a magnetic station (CFU) was deployed in the western flank of the Cumbre Vieja rift, 2 km away from the site where the eruptive vents would open two months later. In September 2021, a second magnetic station (SAN) was installed near the southern end of the rift. In this paper we study two months of geomagnetic data at CFU before the eruption and three months of geomagnetic data at SAN during the eruption. The analysis of these time series revealed a magnetic signal at the CFU station with an amplitude of 10 nT and a duration of 10 days by mid-August, one month before the eruption onset. We studied possible correlations with other physical parameters (ground deformation, long-period and very-long-period seismic activity) and concluded that this signal could be related to changes in the magnetization of rocks beneath the volcanic edifice caused by magma intrusion and volcanic/hydrothermal fluids circulation preceding the eruption. At the SAN magnetic station, the time series suggests that a slight decrease in the geomagnetic field could reflect the end of the eruptive process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与 2021 年 Cumbre Vieja 裂谷(加那利群岛拉帕尔马)塔霍加岩火山爆发有关的火山磁信号
经过近 50 年的沉寂,拉帕尔马的 Cumbre Vieja 裂谷经历了一个重新激活的过程,最终导致塔霍加特火山于 2021 年 9 月 19 日至 12 月 13 日喷发。2021 年 7 月,在坎布雷维埃哈裂谷西侧部署了一个磁力站(CFU),距离两个月后喷发口开放的地点 2 公里。2021 年 9 月,在裂谷南端附近安装了第二个磁力站(SAN)。在本文中,我们研究了 CFU 在喷发前两个月的地磁数据和 SAN 在喷发期间三个月的地磁数据。对这些时间序列的分析表明,到 8 月中旬,即喷发开始前一个月,CFU 站出现了振幅为 10 nT、持续时间为 10 天的磁信号。我们研究了与其他物理参数(地面变形、长周期和甚长周期地震活动)可能存在的相关性,得出结论认为,这一信号可能与火山喷发前岩浆侵入和火山/热液循环引起的火山岩下岩石磁化变化有关。在 SAN 磁性站,时间序列表明,地磁场的轻微下降可能反映了喷发过程的结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
13.80%
发文量
183
审稿时长
19.7 weeks
期刊介绍: An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society. Submission of papers covering the following aspects of volcanology and geothermal research are encouraged: (1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations. (2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis. (3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization. (4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing. (5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts. (6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.
期刊最新文献
Audible and infrasonic waves generated during the 2022 Hunga eruption: Observations from across Aotearoa New Zealand Spatiotemporal characteristics of hydrothermal volatiles from the Tengchong volcanic field in the southeastern Tibetan Plateau: A probable constraint on the genesis of intraplate volcanism Evidences of the structures controlling the unrest in Campi Flegrei, Italy; Joint interpretation of ambient noise and local earthquake tomography Surface deformation caused by the unrest during 2002–2006 of the Changbaishan volcano in China The ghost plume phenomenon and its impact on zenith-facing remote sensing measurements of volcanic SO2 emission rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1