Qian Zhang , Ruo Yu Yin , Zhi Huang , Yan-ying Liu , Jun-ming Hong
{"title":"Catalytic degradation of Reactive Black 5 through peroxymonosulfate activation with Co organic frameworks combined with graphite oxide","authors":"Qian Zhang , Ruo Yu Yin , Zhi Huang , Yan-ying Liu , Jun-ming Hong","doi":"10.1016/j.jpcs.2024.112373","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-efficiency catalysts for peroxymonosulfate (PMS) activation is critical for pollutant treatment in environmental applications. In this research, a Co organic framework (CoHHTP) combined with graphene oxide (GO) (CoHHTP/GO) with a 2D structure was prepared for PMS activation to treat the azo dye Reactive Black 5 (RBK5). The combination of CoHHTP and GO via oxygen groups resulted in the high activity of CoHHTP/GO, and almost 100 % performance was achieved within 30 min under various pH, temperature, PMS loading, and catalyst loading conditions. The maximum RBK5 removal efficiency was obtained with a catalyst loading of 3.0 g L<sup>−1</sup>, PMS loading of 0.5 mM, temperature of 25 °C, and pH of 6 with a pseudo-first-order kinetics k value of 0.1903 min<sup>−1</sup>. The activation energy of the CoHHTP/GO/PMS/RBK5 system was calculated to be 14.34 kJ mol<sup>−1</sup>. Meanwhile, radicals and nonradicals, including SO<sub>4</sub><sup>·−</sup>, ·OH, ·O<sub>2</sub><sup>−</sup>, and <sup>1</sup>O<sub>2</sub>, were proven to be generated and involved in RBK5 degradation. Moreover, RBK5 degradation pathways were identified through experimental research and density functional theory calculation.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112373"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-efficiency catalysts for peroxymonosulfate (PMS) activation is critical for pollutant treatment in environmental applications. In this research, a Co organic framework (CoHHTP) combined with graphene oxide (GO) (CoHHTP/GO) with a 2D structure was prepared for PMS activation to treat the azo dye Reactive Black 5 (RBK5). The combination of CoHHTP and GO via oxygen groups resulted in the high activity of CoHHTP/GO, and almost 100 % performance was achieved within 30 min under various pH, temperature, PMS loading, and catalyst loading conditions. The maximum RBK5 removal efficiency was obtained with a catalyst loading of 3.0 g L−1, PMS loading of 0.5 mM, temperature of 25 °C, and pH of 6 with a pseudo-first-order kinetics k value of 0.1903 min−1. The activation energy of the CoHHTP/GO/PMS/RBK5 system was calculated to be 14.34 kJ mol−1. Meanwhile, radicals and nonradicals, including SO4·−, ·OH, ·O2−, and 1O2, were proven to be generated and involved in RBK5 degradation. Moreover, RBK5 degradation pathways were identified through experimental research and density functional theory calculation.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.