Historical simulation performance evaluation and monthly flow duration curve quantile-mapping (MFDC-QM) of the GEOGLOWS ECMWF streamflow hydrologic model

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-09-27 DOI:10.1016/j.envsoft.2024.106235
J.L. Sanchez Lozano , D.J. Rojas Lesmes , E.G. Romero Bustamante , R.C. Hales , E.J. Nelson , G.P. Williams , D.P. Ames , N.L. Jones , A.L. Gutierrez , C. Cardona Almeida
{"title":"Historical simulation performance evaluation and monthly flow duration curve quantile-mapping (MFDC-QM) of the GEOGLOWS ECMWF streamflow hydrologic model","authors":"J.L. Sanchez Lozano ,&nbsp;D.J. Rojas Lesmes ,&nbsp;E.G. Romero Bustamante ,&nbsp;R.C. Hales ,&nbsp;E.J. Nelson ,&nbsp;G.P. Williams ,&nbsp;D.P. Ames ,&nbsp;N.L. Jones ,&nbsp;A.L. Gutierrez ,&nbsp;C. Cardona Almeida","doi":"10.1016/j.envsoft.2024.106235","DOIUrl":null,"url":null,"abstract":"<div><div>Global hydrological models are essential for managing water resources and predicting hydrological events. However, the local-scale usability of global models challenges big-data management, communication, adoption, and validation. Validation is the biggest challenge bercause of the need for large-scale data management and model calibration, which requires extensive and often inaccessible observed data. This study assesses the GEOGLOWS-ECMWF Global Hydrologic Model, revealing systematic biases that impact its accuracy. We propose a bias-correction methodology using flow duration curves to align non-exceedance probabilities of simulated and observed streamflow, significantly improving the GEOGLOWS model. Unfortunately, this approach does not inherently improve simulations in ungauged locations. The methodology not only enhances the GEOGLOWS model's accuracy but also stands as a versatile solution applicable across various hydrological models. This bias correction approach provides a tool for improving hydrological predictions and gives users the confidence to use global models for local water resource management and decision-making processes.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106235"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002962","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Global hydrological models are essential for managing water resources and predicting hydrological events. However, the local-scale usability of global models challenges big-data management, communication, adoption, and validation. Validation is the biggest challenge bercause of the need for large-scale data management and model calibration, which requires extensive and often inaccessible observed data. This study assesses the GEOGLOWS-ECMWF Global Hydrologic Model, revealing systematic biases that impact its accuracy. We propose a bias-correction methodology using flow duration curves to align non-exceedance probabilities of simulated and observed streamflow, significantly improving the GEOGLOWS model. Unfortunately, this approach does not inherently improve simulations in ungauged locations. The methodology not only enhances the GEOGLOWS model's accuracy but also stands as a versatile solution applicable across various hydrological models. This bias correction approach provides a tool for improving hydrological predictions and gives users the confidence to use global models for local water resource management and decision-making processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GEOGLOWS ECMWF 溪流水文模型的历史模拟性能评估和月流量持续时间曲线量化绘图 (MFDC-QM)
全球水文模型对于管理水资源和预测水文事件至关重要。然而,全球模型在地方范围内的可用性对大数据管理、交流、采用和验证提出了挑战。验证是最大的挑战,因为需要大规模的数据管理和模型校准,而这需要大量且通常无法获取的观测数据。本研究对 GEOGLOWS-ECMWF 全球水文模型进行了评估,揭示了影响其准确性的系统性偏差。我们提出了一种偏差校正方法,利用水流持续时间曲线来调整模拟和观测水流的非超标概率,从而显著改善 GEOGLOWS 模型。遗憾的是,这种方法并不能从本质上改善无测站地点的模拟。该方法不仅提高了 GEOGLOWS 模型的准确性,也是适用于各种水文模型的通用解决方案。这种偏差修正方法提供了一种改进水文预测的工具,使用户有信心将全球模型用于当地水资源管理和决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1