Dataset for a novel AI-powered diagnostic tool for Plasmodium parasite detection authors

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-09-17 DOI:10.1016/j.dib.2024.110950
Olumide T. Adeleke , Halleluyah O. Aworinde , Mary Oboh , Oladipo Oladosu , Alaba B. Ayenigba , Bukola Atobatele , Oludamola V. Adeleke , Tunde S. Oladipo , Segun Adebayo
{"title":"Dataset for a novel AI-powered diagnostic tool for Plasmodium parasite detection authors","authors":"Olumide T. Adeleke ,&nbsp;Halleluyah O. Aworinde ,&nbsp;Mary Oboh ,&nbsp;Oladipo Oladosu ,&nbsp;Alaba B. Ayenigba ,&nbsp;Bukola Atobatele ,&nbsp;Oludamola V. Adeleke ,&nbsp;Tunde S. Oladipo ,&nbsp;Segun Adebayo","doi":"10.1016/j.dib.2024.110950","DOIUrl":null,"url":null,"abstract":"<div><div>Malaria remains a serious public health problem in many developing countries, particularly in Sub-Saharan Africa. Early detection and treatment of malaria are crucial in the fight against malaria in order to reduce morbidity and mortality, especially in the endemic regions. We set out to develop a simple, accurate, and efficient innovative diagnostic tool for malaria parasite identification that uses automated image processing to provide shorter diagnosis times while improving accuracy, efficiency, and standardization. Our primary goal in this study is to collect, curate, annotate and achieve blood smear images containing Plasmodium species for effective malaria diagnosis using Artificial Intelligent based system. The study curated 881 blood smear images which are categorized as positive and negative images.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Malaria remains a serious public health problem in many developing countries, particularly in Sub-Saharan Africa. Early detection and treatment of malaria are crucial in the fight against malaria in order to reduce morbidity and mortality, especially in the endemic regions. We set out to develop a simple, accurate, and efficient innovative diagnostic tool for malaria parasite identification that uses automated image processing to provide shorter diagnosis times while improving accuracy, efficiency, and standardization. Our primary goal in this study is to collect, curate, annotate and achieve blood smear images containing Plasmodium species for effective malaria diagnosis using Artificial Intelligent based system. The study curated 881 blood smear images which are categorized as positive and negative images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于疟原虫检测的新型人工智能诊断工具的数据集 作者
在许多发展中国家,特别是撒哈拉以南非洲地区,疟疾仍然是一个严重的公共卫生问题。为了降低发病率和死亡率,尤其是在疟疾流行地区,疟疾的早期发现和治疗对于抗击疟疾至关重要。我们着手开发一种简单、准确、高效的创新型疟原虫鉴定诊断工具,该工具采用自动图像处理技术,可缩短诊断时间,同时提高准确性、效率和标准化程度。本研究的主要目标是收集、整理、注释和实现含有疟原虫的血涂片图像,以便使用基于人工智能的系统进行有效的疟疾诊断。这项研究收集了 881 张血液涂片图像,分为阳性和阴性图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Dataset of dendrometer and environmental parameter measurements of two different species of the group of genera known as eucalypts in South Africa and Portugal Bulk mRNA-sequencing data of the estrogen and androgen responses in the human prostate cancer cell line VCaP A refined spirometry dataset for comparing segmented (piecewise) linear models to that of GAMLSS Shotgun metagenomics sequencing data of root microbial community of Huanglongbing-infected Citrus nobilis BEEHIVE: A dataset of Apis mellifera images to empower honeybee monitoring research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1