Cecilia Castro , Eric L. Harshfield , Adam S. Butterworth , Angela M. Wood , Albert Koulman , Julian L. Griffin
{"title":"A lipidomic dataset for epidemiological studies of acute myocardial infarction","authors":"Cecilia Castro , Eric L. Harshfield , Adam S. Butterworth , Angela M. Wood , Albert Koulman , Julian L. Griffin","doi":"10.1016/j.dib.2024.110925","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the cause of coronary heart diseases relies on the analysis of data from a range of techniques on an epidemiological scale. Lipidomics, the identification and quantification of lipid species in a system, is an omic approach increasingly used in epidemiology. The altered concentration of lipids in plasma is one of the recognised risk factors for these diseases. An important first step in the analysis is to profile lipids in healthy volunteers at an epidemiological level to understand how the geneome influences risk factors; for this reason we made use of the control samples within a bigger case-control sample collection in Pakistan from patients with first acute myocardial infarctions. After extraction, the samples were infused into a Thermo Exactive Orbitrap, without any up-front chromatographic separation. The use of direct infusion allowed fast experiment, facilitating the analysis of large sets of samples. The raw data were processed and analysed using scripts within R, to extract all the meaningful information. The data set originated from this study is a valuable resource to both increase our knowledge in lipid metabolism associated with myocardial infarction, and test new methods and strategy in analysing big lipidomic data sets.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924008886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the cause of coronary heart diseases relies on the analysis of data from a range of techniques on an epidemiological scale. Lipidomics, the identification and quantification of lipid species in a system, is an omic approach increasingly used in epidemiology. The altered concentration of lipids in plasma is one of the recognised risk factors for these diseases. An important first step in the analysis is to profile lipids in healthy volunteers at an epidemiological level to understand how the geneome influences risk factors; for this reason we made use of the control samples within a bigger case-control sample collection in Pakistan from patients with first acute myocardial infarctions. After extraction, the samples were infused into a Thermo Exactive Orbitrap, without any up-front chromatographic separation. The use of direct infusion allowed fast experiment, facilitating the analysis of large sets of samples. The raw data were processed and analysed using scripts within R, to extract all the meaningful information. The data set originated from this study is a valuable resource to both increase our knowledge in lipid metabolism associated with myocardial infarction, and test new methods and strategy in analysing big lipidomic data sets.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.