Adaptive filter based sub-synchronous oscillation damping strategy for doubly-fed induction generators

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2024-10-11 DOI:10.1016/j.ijepes.2024.110280
Xiaolong Liu , Lujie Yu , Jiebei Zhu , Hongjie Jia , Chi Yung Chung , Vladimir Terzija , Jean Mahseredjian
{"title":"Adaptive filter based sub-synchronous oscillation damping strategy for doubly-fed induction generators","authors":"Xiaolong Liu ,&nbsp;Lujie Yu ,&nbsp;Jiebei Zhu ,&nbsp;Hongjie Jia ,&nbsp;Chi Yung Chung ,&nbsp;Vladimir Terzija ,&nbsp;Jean Mahseredjian","doi":"10.1016/j.ijepes.2024.110280","DOIUrl":null,"url":null,"abstract":"<div><div>To address the technical challenge that the conventional sub-synchronous oscillation (SSO) damping strategy for doubly-fed induction generator can only suppress SSO in a specific frequency band for series compensated network, this paper proposes an Adaptive Filter Based SSO Damping (AF-SSOD) strategy for Doubly-fed Induction Generators. The AF-SSOD controller consists of a filter-based SSO Damper (SSOD) suppressing module to extract and whittle down the amplitude of the dominant SSO frequency bands, a frequency identification module to obtain real-time dominant SSO frequency by Kaiser window enhanced Fast Fourier transformation (FFT) as well as a frequency locking module to update the central frequency of SSOD, achieving the high adaptability of SSO suppression under various operating conditions. The key parameters of AF-SSOD are analyzed and optimized via small signal analysis (SSA). Finally, simulation verification and comparisons are carried out, showing that AF-SSOD can effectively suppress SSO in different frequencies with satisfactory robustness and superior performance over existing SSO suppressing strategies.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110280"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005027","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To address the technical challenge that the conventional sub-synchronous oscillation (SSO) damping strategy for doubly-fed induction generator can only suppress SSO in a specific frequency band for series compensated network, this paper proposes an Adaptive Filter Based SSO Damping (AF-SSOD) strategy for Doubly-fed Induction Generators. The AF-SSOD controller consists of a filter-based SSO Damper (SSOD) suppressing module to extract and whittle down the amplitude of the dominant SSO frequency bands, a frequency identification module to obtain real-time dominant SSO frequency by Kaiser window enhanced Fast Fourier transformation (FFT) as well as a frequency locking module to update the central frequency of SSOD, achieving the high adaptability of SSO suppression under various operating conditions. The key parameters of AF-SSOD are analyzed and optimized via small signal analysis (SSA). Finally, simulation verification and comparisons are carried out, showing that AF-SSOD can effectively suppress SSO in different frequencies with satisfactory robustness and superior performance over existing SSO suppressing strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应滤波器的双馈感应发电机亚同步振荡抑制策略
传统的双馈感应发电机亚同步振荡(SSO)阻尼策略只能抑制串联补偿电网特定频段的 SSO,为了解决这一技术难题,本文提出了一种适用于双馈感应发电机的基于滤波器的自适应 SSO 阻尼(AF-SSOD)策略。AF-SSOD 控制器由基于滤波器的 SSO 阻尼器(SSOD)抑制模块、频率识别模块和频率锁定模块组成,前者用于提取和削减 SSO 主导频段的振幅,后者通过凯泽窗增强快速傅里叶变换(FFT)获得实时的 SSO 主导频率,并更新 SSOD 的中心频率,从而实现在各种运行条件下 SSO 抑制的高适应性。通过小信号分析(SSA)对 AF-SSOD 的关键参数进行了分析和优化。最后,进行了仿真验证和比较,结果表明 AF-SSOD 能有效抑制不同频率的 SSO,鲁棒性令人满意,性能优于现有的 SSO 抑制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Microgrid energy management strategy considering source-load forecast error A dimension-enhanced residual multi-scale attention framework for identifying anomalous waveforms of fault recorders Grid structure optimization using slow coherency theory and holomorphic embedding method Two-stage multi-objective optimal dispatch of hybrid power generation system for ramp stress mitigation A fast, simple and local protection scheme for fault detection and classification during power swings based on differential current component
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1