Puhao Lei , Zhen Chen , Runli Tao , Jun Li , Yuchi Hao
{"title":"Boundary recognition of ship planar components from point clouds based on trimmed delaunay triangulation","authors":"Puhao Lei , Zhen Chen , Runli Tao , Jun Li , Yuchi Hao","doi":"10.1016/j.cad.2024.103808","DOIUrl":null,"url":null,"abstract":"<div><div>A vision-based boundary detector is crucial for intelligent processing of ship planar components due to its automatically identifying workpiece edges. However, traditional methods suffer from many issues such as low accuracy and excessive detection errors for these workpieces with complex shape profiles. This paper proposes a trimmed Delaunay triangulation method (TDT) for recognizing boundary edges of planar workpieces from point clouds. It begins by distinguishing the difference of binary image pixel generated from point cloud to eliminate redundant points far away from plane boundary. Then, a triangulation trimming algorithm is developed to extract the edge points from the simplified points. Finally, complete plane boundary is reconstructed by a clustering-and-fitting method from the extracted edge points. Experimental results from multiple angles show that average absolute errors of straight edges and angles recognition are 1.29 mm and 1.04° respectively, which demonstrate that TDT has a high identification accuracy and robustness of plane boundary edge.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"178 ","pages":"Article 103808"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001350","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A vision-based boundary detector is crucial for intelligent processing of ship planar components due to its automatically identifying workpiece edges. However, traditional methods suffer from many issues such as low accuracy and excessive detection errors for these workpieces with complex shape profiles. This paper proposes a trimmed Delaunay triangulation method (TDT) for recognizing boundary edges of planar workpieces from point clouds. It begins by distinguishing the difference of binary image pixel generated from point cloud to eliminate redundant points far away from plane boundary. Then, a triangulation trimming algorithm is developed to extract the edge points from the simplified points. Finally, complete plane boundary is reconstructed by a clustering-and-fitting method from the extracted edge points. Experimental results from multiple angles show that average absolute errors of straight edges and angles recognition are 1.29 mm and 1.04° respectively, which demonstrate that TDT has a high identification accuracy and robustness of plane boundary edge.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.