{"title":"Readily constructed squaraine J-aggregates with an 86.0 % photothermal conversion efficiency for photothermal therapy","authors":"Xin Xie , Yafang Dong , Yuan Zhang , Zongliang Xie , Xinsheng Peng , Yong Huang , Wei Yang , Bowen Li , Qiqing Zhang","doi":"10.1016/j.bioactmat.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>The development of photothermal agents with high photothermal conversion efficiency (PCE) and long absorption wavelengths is crucial for safe and effective anti-cancer treatment. However, achieving these advantages often requires precise molecular design and complex synthetic procedures. In this study, we present a simple, precise, and effective method for fabricating photothermal agents with high PCE using long wavelength excitation. This approach involves linking two electron-donating components, diphenylamine (DPA), and an electron-withdrawing squaraine (SQ), via a π-bridge thiophene (T). The resulting D-π-A-π-D structure leads to a red-shifted absorption band. Within the DTS structure, DPA functions as a molecular rotor, T serves as a coplanar backbone, and SQ promotes J aggregation. When DTS nanoparticles (NPs) are fabricated using an amphiphilic nano-carrier, the maximum absorption wavelength shifts from 701 to 803 nm. This shift is accompanied by reduced fluorescence and an exceptionally high PCE of 86.0 %. Both in vitro and in vivo assessments confirm that DTS NPs exhibit strong potential for photothermal antitumor therapy. Overall, this strategy offers a valuable framework for designing photothermal agents with clinical applications in mind, offering a simpler and more efficient approach to achieving high PCE and long absorption wavelengths.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 460-470"},"PeriodicalIF":18.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004341","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of photothermal agents with high photothermal conversion efficiency (PCE) and long absorption wavelengths is crucial for safe and effective anti-cancer treatment. However, achieving these advantages often requires precise molecular design and complex synthetic procedures. In this study, we present a simple, precise, and effective method for fabricating photothermal agents with high PCE using long wavelength excitation. This approach involves linking two electron-donating components, diphenylamine (DPA), and an electron-withdrawing squaraine (SQ), via a π-bridge thiophene (T). The resulting D-π-A-π-D structure leads to a red-shifted absorption band. Within the DTS structure, DPA functions as a molecular rotor, T serves as a coplanar backbone, and SQ promotes J aggregation. When DTS nanoparticles (NPs) are fabricated using an amphiphilic nano-carrier, the maximum absorption wavelength shifts from 701 to 803 nm. This shift is accompanied by reduced fluorescence and an exceptionally high PCE of 86.0 %. Both in vitro and in vivo assessments confirm that DTS NPs exhibit strong potential for photothermal antitumor therapy. Overall, this strategy offers a valuable framework for designing photothermal agents with clinical applications in mind, offering a simpler and more efficient approach to achieving high PCE and long absorption wavelengths.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.