WonJin Kim , Dong Rak Kwon , Hyeongjin Lee , JaeYoon Lee , Yong Suk Moon , Sang Chul Lee , Geun Hyung Kim
{"title":"3D bioprinted multi-layered cell constructs with gradient core-shell interface for tendon-to-bone tissue regeneration","authors":"WonJin Kim , Dong Rak Kwon , Hyeongjin Lee , JaeYoon Lee , Yong Suk Moon , Sang Chul Lee , Geun Hyung Kim","doi":"10.1016/j.bioactmat.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>Rotator cuff tears are common among physically active individuals and often require surgical intervention owing to their limited self-healing capacity. This study proposes a new bioprinting approach using bone- and tendon tissue-specific bioinks derived from decellularized extracellular matrix, supplemented with hydroxyapatite and TGF-β/poly(vinyl alcohol) to fabricate engineered tendon-to-bone complex tissue. To achieve this goal, a core-shell nozzle system attached to a bioprinter enables the effective and simultaneous fabrication of aligned tendon tissue, a gradient tendon-bone interface (TBI), and a mechanically improved bone region, mimicking the native tendon-to-bone structure. <em>In vitro</em> evaluation demonstrated the well-directed differentiation of human adipose stem cells towards osteogenic and tenogenic lineages in the bone and tendon constructs. In the graded TBI structure, further facilitated fibrocartilage formation and enhanced the integration of tendon-to-bone tissues compared to non-graded structures <em>in vitro</em>. Furthermore, using a rabbit rotator cuff tear model, implantation of the biologically graded constructs significantly promoted the rapid regeneration of full-thickness tendon-to-bone tissue, including the formation of a high-quality TBI <em>in vivo</em>. This bioprinting approach not only improved mechanical properties and tissue integration but also enhanced angiogenesis and extracellular matrix (ECM) formation, demonstrating its potential as a promising platform for the regeneration of tendon-to-bone complex tissues.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 471-490"},"PeriodicalIF":18.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004468","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rotator cuff tears are common among physically active individuals and often require surgical intervention owing to their limited self-healing capacity. This study proposes a new bioprinting approach using bone- and tendon tissue-specific bioinks derived from decellularized extracellular matrix, supplemented with hydroxyapatite and TGF-β/poly(vinyl alcohol) to fabricate engineered tendon-to-bone complex tissue. To achieve this goal, a core-shell nozzle system attached to a bioprinter enables the effective and simultaneous fabrication of aligned tendon tissue, a gradient tendon-bone interface (TBI), and a mechanically improved bone region, mimicking the native tendon-to-bone structure. In vitro evaluation demonstrated the well-directed differentiation of human adipose stem cells towards osteogenic and tenogenic lineages in the bone and tendon constructs. In the graded TBI structure, further facilitated fibrocartilage formation and enhanced the integration of tendon-to-bone tissues compared to non-graded structures in vitro. Furthermore, using a rabbit rotator cuff tear model, implantation of the biologically graded constructs significantly promoted the rapid regeneration of full-thickness tendon-to-bone tissue, including the formation of a high-quality TBI in vivo. This bioprinting approach not only improved mechanical properties and tissue integration but also enhanced angiogenesis and extracellular matrix (ECM) formation, demonstrating its potential as a promising platform for the regeneration of tendon-to-bone complex tissues.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.