Yuqi Zheng, Ruidong Yan, Bin Jia, Rui Jiang, Shiteng Zheng
{"title":"Soft collision avoidance based car following algorithm for autonomous driving with reinforcement learning","authors":"Yuqi Zheng, Ruidong Yan, Bin Jia, Rui Jiang, Shiteng Zheng","doi":"10.1016/j.physa.2024.130137","DOIUrl":null,"url":null,"abstract":"<div><div>By safety supervision on dangerous driving behaviors, emergent braking in autonomous vehicles can effectively prevent collisions when using the car following algorithm based on deep reinforcement learning. However, the significant deceleration associated with emergent braking often results in an uncomfortable driving experience and high energy consumption. To address this issue, a soft collision avoidance based car following algorithm is proposed. Different from emergent braking, our approach introduces a deceleration adjustment value to the current acceleration output. This adjustment value is calculated by considering safe distance with attenuation coefficient in terms of multi-step prediction, while the attenuation coefficient and the predicted time step are discussed in detail. Comparative analysis, including statistical results and representative cases, demonstrates that the proposed algorithm significantly enhances driving comfort (improve 37.341 %) and reduces energy consumption (improve 11.244 %) without increasing collision risks.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130137"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006460","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
By safety supervision on dangerous driving behaviors, emergent braking in autonomous vehicles can effectively prevent collisions when using the car following algorithm based on deep reinforcement learning. However, the significant deceleration associated with emergent braking often results in an uncomfortable driving experience and high energy consumption. To address this issue, a soft collision avoidance based car following algorithm is proposed. Different from emergent braking, our approach introduces a deceleration adjustment value to the current acceleration output. This adjustment value is calculated by considering safe distance with attenuation coefficient in terms of multi-step prediction, while the attenuation coefficient and the predicted time step are discussed in detail. Comparative analysis, including statistical results and representative cases, demonstrates that the proposed algorithm significantly enhances driving comfort (improve 37.341 %) and reduces energy consumption (improve 11.244 %) without increasing collision risks.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.