{"title":"Enhanced thermal conductivity of UHMWPE by coating boron nitride and polyurethane composites","authors":"Jiajing Zhang , Zhuan Fu , Chunhua Zhang , Feng Qiu , Jiahao Xu , Liangjun Xia , Yuhai Guo , Weilin Xu","doi":"10.1016/j.porgcoat.2024.108848","DOIUrl":null,"url":null,"abstract":"<div><div>The development of textile wearable electronics has increased demands and requirements for thermal management materials due to integrated and miniaturized soft equipment. In this work, the surface of ultrahigh molecular weight polyethylene (UHMWPE) fibers was first decorated by polydopamine (PDA) to improve the surface activity and construct a steady interface layer. Then the boron nitride/polyurethane coating surface modified UHMWPE composite yarns with good thermal conductivity were produced using a coaxial wet forming process. The thermally conductive composite yarns demonstrated great mechanical properties (5.09 % strain, 0.79 N/tex strength) and thermal conductivity (0.54 ± 0.02 W·mK<sup>−1</sup>) with the BN/PU weight ratio of 1. Furthermore, the resistance to failure cycles was taken place, and the composite yarns kept good thermal conductivity after multiple cycles twisting, bending, washing, cooling and heating cycles. By the coaxial wet fabrication, the thermally conductive composite yarns were constructed, offering a viable and trustworthy method for creating polymer-based thermal interface materials with high thermal conductivity.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"197 ","pages":"Article 108848"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006404","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The development of textile wearable electronics has increased demands and requirements for thermal management materials due to integrated and miniaturized soft equipment. In this work, the surface of ultrahigh molecular weight polyethylene (UHMWPE) fibers was first decorated by polydopamine (PDA) to improve the surface activity and construct a steady interface layer. Then the boron nitride/polyurethane coating surface modified UHMWPE composite yarns with good thermal conductivity were produced using a coaxial wet forming process. The thermally conductive composite yarns demonstrated great mechanical properties (5.09 % strain, 0.79 N/tex strength) and thermal conductivity (0.54 ± 0.02 W·mK−1) with the BN/PU weight ratio of 1. Furthermore, the resistance to failure cycles was taken place, and the composite yarns kept good thermal conductivity after multiple cycles twisting, bending, washing, cooling and heating cycles. By the coaxial wet fabrication, the thermally conductive composite yarns were constructed, offering a viable and trustworthy method for creating polymer-based thermal interface materials with high thermal conductivity.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.