Preparation of multi-element doped carbon nanospheres with core-shell structure derived from polystyrene as lubricating additives for improving tribological behavior
Yixin Wang , Sha Liu , Tiantian Wang , Shujuan Liu , Qian Ye , Feng Zhou , Weimin Liu
{"title":"Preparation of multi-element doped carbon nanospheres with core-shell structure derived from polystyrene as lubricating additives for improving tribological behavior","authors":"Yixin Wang , Sha Liu , Tiantian Wang , Shujuan Liu , Qian Ye , Feng Zhou , Weimin Liu","doi":"10.1016/j.carbon.2024.119677","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the multi-element doped carbon nanospheres with core-shell structure (N,P,S-PCNs) have been successfully synthesized through the carbonization of hyper-cross-linked polystyrene nanospheres (HPSs) encapsulated with poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS). The phosphonitrilic chloride trimer can in-situ assemble on HPSs surface, forming a poly(phosphonitrilic chloride trimer) film via sulfonyldiphenol as cross-linking agent to obtain HPSs@PZS. Subsequently, the HPSs@PZS undergoes high-temperature calcination under N<sub>2</sub> atmosphere, and PZS with a well-preserved encapsulation capability efficiently incorporated N, P and S into carbon nanospheres to gain multi-element (N,P,S) co-doped carbon nanospheres (N,P,S-PCNs) with core-shell structure. The prepared N,P,S-PCNs exhibit exceptional dispersibility and stability as lubricant additives, effectively mitigating friction (reduced to 0.106) and wear (decreased by 84.0 %). The lubrication performance of N,P,S-PCNs is exceptional due to the nanospheres' remarkable ability to enter the gaps between friction pairs and form a deposition film on the surfaces. Moreover, the nanospheres can undergo a chemical reaction with the matrix surface, resulting in the formation of a chemical protective film. The composite protective film (deposition film and chemical protective film) significantly enhances the lubricants' ability to reduce friction and resist wear.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"230 ","pages":"Article 119677"},"PeriodicalIF":10.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324008960","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the multi-element doped carbon nanospheres with core-shell structure (N,P,S-PCNs) have been successfully synthesized through the carbonization of hyper-cross-linked polystyrene nanospheres (HPSs) encapsulated with poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS). The phosphonitrilic chloride trimer can in-situ assemble on HPSs surface, forming a poly(phosphonitrilic chloride trimer) film via sulfonyldiphenol as cross-linking agent to obtain HPSs@PZS. Subsequently, the HPSs@PZS undergoes high-temperature calcination under N2 atmosphere, and PZS with a well-preserved encapsulation capability efficiently incorporated N, P and S into carbon nanospheres to gain multi-element (N,P,S) co-doped carbon nanospheres (N,P,S-PCNs) with core-shell structure. The prepared N,P,S-PCNs exhibit exceptional dispersibility and stability as lubricant additives, effectively mitigating friction (reduced to 0.106) and wear (decreased by 84.0 %). The lubrication performance of N,P,S-PCNs is exceptional due to the nanospheres' remarkable ability to enter the gaps between friction pairs and form a deposition film on the surfaces. Moreover, the nanospheres can undergo a chemical reaction with the matrix surface, resulting in the formation of a chemical protective film. The composite protective film (deposition film and chemical protective film) significantly enhances the lubricants' ability to reduce friction and resist wear.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.