{"title":"Improving the performance of grid-connected inverters during asymmetrical faults and unbalanced grid voltages","authors":"Sepideh Shabani, Mehdi Gholipour, Mehdi Niroomand","doi":"10.1049/gtd2.13258","DOIUrl":null,"url":null,"abstract":"<p>The increasing penetration of the distributed energy resources (DER) in the power grid, which, while having significant advantages, also pose significant challenges. The behaviors of DERs differ from those of synchronous generators, particularly in abnormal conditions. For this reason, the power grid enforces grid codes to ensure that DERs perform properly in different conditions. For instance, short circuit faults and unbalanced grid voltage are severe transient events that inverters need to be able to pass through without disconnecting from the grid. Furthermore, the inverters are required to support the grid voltage by regulating the active and reactive power injections. This article proposes a voltage support control scheme to support grid voltage during asymmetrical voltage drop by utilizing an optimization problem. In this optimization problem, the active and reactive powers injected into the grid will be obtained optimally by considering constraints such as instantaneous active and reactive power oscillation magnitudes and peak current limitation. To aid in this purpose, the corresponding mathematical formulations such as instantaneous active and reactive power oscillation magnitudes will be obtained by using the currents and voltages in stationary reference frame. The proposed scheme will be verified by simulating it in MATLAB/Simulink under three different scenarios and tested on a real-time experimental Opal-RT platform.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 19","pages":"3097-3107"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13258","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13258","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing penetration of the distributed energy resources (DER) in the power grid, which, while having significant advantages, also pose significant challenges. The behaviors of DERs differ from those of synchronous generators, particularly in abnormal conditions. For this reason, the power grid enforces grid codes to ensure that DERs perform properly in different conditions. For instance, short circuit faults and unbalanced grid voltage are severe transient events that inverters need to be able to pass through without disconnecting from the grid. Furthermore, the inverters are required to support the grid voltage by regulating the active and reactive power injections. This article proposes a voltage support control scheme to support grid voltage during asymmetrical voltage drop by utilizing an optimization problem. In this optimization problem, the active and reactive powers injected into the grid will be obtained optimally by considering constraints such as instantaneous active and reactive power oscillation magnitudes and peak current limitation. To aid in this purpose, the corresponding mathematical formulations such as instantaneous active and reactive power oscillation magnitudes will be obtained by using the currents and voltages in stationary reference frame. The proposed scheme will be verified by simulating it in MATLAB/Simulink under three different scenarios and tested on a real-time experimental Opal-RT platform.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf