Shirin Faraji, David Picconi, Elisa Palacino-González
{"title":"Advanced quantum and semiclassical methods for simulating photoinduced molecular dynamics and spectroscopy","authors":"Shirin Faraji, David Picconi, Elisa Palacino-González","doi":"10.1002/wcms.1731","DOIUrl":null,"url":null,"abstract":"<p>Molecular-level understanding of photoinduced processes is critically important for breakthroughs in transformative technologies utilizing light, ranging from photomedicine to photoresponsive materials. Theory and simulation play a crucial role in this task. Despite great advances in hardware and computational methods, the theoretical description of photoinduced phenomena in the presence of complex environments and external photoexcitation conditions still poses formidable challenges for theoreticians and there are numerous formal and computational difficulties that must be overcome. The development of predictive, accurate, and at the same time, computationally efficient theoretical approaches to describe complex problems in photochemistry and photophysics is an active field of research in contemporary theoretical and computational chemistry. In this advanced review, we discuss modern computational advances and novel approaches that have been recently developed in excited-electronic structure methods, and multiscale modeling, with a special emphasis on coupled electron-nuclear dynamics and spectroscopy, from fully quantum to semi-classical methodologies—including dissipative effects, the explicit light field interaction, femtosecond time-resolved spectroscopy, and software infrastructure.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 5","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1731","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular-level understanding of photoinduced processes is critically important for breakthroughs in transformative technologies utilizing light, ranging from photomedicine to photoresponsive materials. Theory and simulation play a crucial role in this task. Despite great advances in hardware and computational methods, the theoretical description of photoinduced phenomena in the presence of complex environments and external photoexcitation conditions still poses formidable challenges for theoreticians and there are numerous formal and computational difficulties that must be overcome. The development of predictive, accurate, and at the same time, computationally efficient theoretical approaches to describe complex problems in photochemistry and photophysics is an active field of research in contemporary theoretical and computational chemistry. In this advanced review, we discuss modern computational advances and novel approaches that have been recently developed in excited-electronic structure methods, and multiscale modeling, with a special emphasis on coupled electron-nuclear dynamics and spectroscopy, from fully quantum to semi-classical methodologies—including dissipative effects, the explicit light field interaction, femtosecond time-resolved spectroscopy, and software infrastructure.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.