{"title":"Exploring Global Data Sets to Detect Changes in Soil Microbial Carbon and Nitrogen Over Three Decades","authors":"Wenjiao Shi, Decai Gao, Zhen Zhang, Jinzhi Ding, Chunhong Zhao, Huimin Wang, Frank Hagedorn","doi":"10.1029/2024EF004733","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Understanding the temporal dynamics of soil microbial biomass is crucial for assessing soil ecosystem functions and services, yet these dynamics are globally uncertain. Here, we compiled a data set of soil microbial biomass carbon (MBC) and nitrogen (MBN) from 1493 studies between 1988 and 2019 to elucidate their temporal trends and potential drivers. Results showed that global MBC and MBN significantly decreased by 0.033 Mg C ha<sup>−1</sup> yr<sup>−1</sup> and 0.007 Mg N ha<sup>−1</sup> yr<sup>−1</sup> at 0–30 cm soil depth, between 1988 and 2019, respectively, which might be primarily attributed to the warming of the climate, the increase in global precipitation, and reduction of soil organic carbon (SOC) stock. The rate of decline in MBC and MBN showed a non-linear trend: following a decline from 1988 to 1999, it slowed down until 2014, likely due to the global warming hiatus. Afterward, the pace of decline increased again from 2015 to 2019. Boreal biomes experienced the largest decrease in soil microbial biomass with the reduction rate of MBC being 4.3 times higher than in temperate biomes, showing a higher sensitivity in boreal biomes to climate change. Grassland ecosystems also exhibited greater reductions, possibly driven by their degradation. These findings shed valuable insights on the long-term dynamics of soil microbial biomass on a global scale over the last three decades. Furthermore, this study underscores the importance of preserving soil microbial biomass as a key strategy to mitigate the adverse effects of future climate change, thereby sustaining ecosystem health and resilience.</p>\n </section>\n </div>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 10","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004733","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004733","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the temporal dynamics of soil microbial biomass is crucial for assessing soil ecosystem functions and services, yet these dynamics are globally uncertain. Here, we compiled a data set of soil microbial biomass carbon (MBC) and nitrogen (MBN) from 1493 studies between 1988 and 2019 to elucidate their temporal trends and potential drivers. Results showed that global MBC and MBN significantly decreased by 0.033 Mg C ha−1 yr−1 and 0.007 Mg N ha−1 yr−1 at 0–30 cm soil depth, between 1988 and 2019, respectively, which might be primarily attributed to the warming of the climate, the increase in global precipitation, and reduction of soil organic carbon (SOC) stock. The rate of decline in MBC and MBN showed a non-linear trend: following a decline from 1988 to 1999, it slowed down until 2014, likely due to the global warming hiatus. Afterward, the pace of decline increased again from 2015 to 2019. Boreal biomes experienced the largest decrease in soil microbial biomass with the reduction rate of MBC being 4.3 times higher than in temperate biomes, showing a higher sensitivity in boreal biomes to climate change. Grassland ecosystems also exhibited greater reductions, possibly driven by their degradation. These findings shed valuable insights on the long-term dynamics of soil microbial biomass on a global scale over the last three decades. Furthermore, this study underscores the importance of preserving soil microbial biomass as a key strategy to mitigate the adverse effects of future climate change, thereby sustaining ecosystem health and resilience.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.