{"title":"Evaluation of vibration-induced local fatigue based on guided wave measurement","authors":"Yunxian Xia, Chao Zhang, Yuxiang Huang, Chongcong Tao, Hongli Ji, Jinhao Qiu","doi":"10.1111/ffe.14413","DOIUrl":null,"url":null,"abstract":"<p>To investigate the local damage characteristics and properties of stiffness degradation in aluminum structures under vibration fatigue, an evaluation method of the fatigue property for local areas has been proposed by identifying the stiffness from the phase velocity obtained by the laser ultrasonic system. First, vibration fatigue tests were conducted on 2024-O aluminum alloy components under four different stress levels. To address the issue of local damage characteristics under vibration fatigue, a scan window to achieve the local phase velocities within a small local region was employed, and then, the local stiffness can be calculated. By tracking the residual stiffness of the weakest region, the local damage factor was calculated. A unified model with normalized periods at different stress levels was carried out to predict the evolutionary trend. This approach offers a more efficient alternative to estimate local fatigue damage and residual life through the monitoring of local stiffness during maintenance.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 11","pages":"4048-4062"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14413","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the local damage characteristics and properties of stiffness degradation in aluminum structures under vibration fatigue, an evaluation method of the fatigue property for local areas has been proposed by identifying the stiffness from the phase velocity obtained by the laser ultrasonic system. First, vibration fatigue tests were conducted on 2024-O aluminum alloy components under four different stress levels. To address the issue of local damage characteristics under vibration fatigue, a scan window to achieve the local phase velocities within a small local region was employed, and then, the local stiffness can be calculated. By tracking the residual stiffness of the weakest region, the local damage factor was calculated. A unified model with normalized periods at different stress levels was carried out to predict the evolutionary trend. This approach offers a more efficient alternative to estimate local fatigue damage and residual life through the monitoring of local stiffness during maintenance.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.