{"title":"Short-term load interval prediction with unilateral adaptive update strategy and simplified biased convex cost function","authors":"Shu Zheng, Huan Long, Zhi Wu, Wei Gu, Jingtao Zhao, Runhao Geng","doi":"10.1049/gtd2.13259","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a unilateral Adaptive update strategy based Interval Prediction (AIP) model for short-term load prediction, which is developed based on lower and upper bound estimation (LUBE) architecture. In traditional LUBE interval prediction model, the model training is usually trained by heuristic algorithms. In this article, the model training is formulated as a bi-level optimization problem with the help of proposed unilateral adaptive update strategy and cost function. In lower-level problem, a simplified biased convex cost function is developed to supervise the learning direction of basic prediction engines. The basic prediction engine utilizes Gated Recurrent Unit (GRU) to extract features and Full connected Neural Network (FNN) to generate interval boundary. In upper-level problem, a unilateral adaptive update strategy with unilateral coverage rate is put forward. It iteratively tunes hyper-parameters of cost function during training process. Comprehensive experiments based on residential load data are implemented and the proposed interval prediction model outperforms the tested state-of-the-art algorithms, achieving a 15% reduction in prediction error and a 20% decrease in computational time.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 19","pages":"3108-3119"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13259","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13259","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a unilateral Adaptive update strategy based Interval Prediction (AIP) model for short-term load prediction, which is developed based on lower and upper bound estimation (LUBE) architecture. In traditional LUBE interval prediction model, the model training is usually trained by heuristic algorithms. In this article, the model training is formulated as a bi-level optimization problem with the help of proposed unilateral adaptive update strategy and cost function. In lower-level problem, a simplified biased convex cost function is developed to supervise the learning direction of basic prediction engines. The basic prediction engine utilizes Gated Recurrent Unit (GRU) to extract features and Full connected Neural Network (FNN) to generate interval boundary. In upper-level problem, a unilateral adaptive update strategy with unilateral coverage rate is put forward. It iteratively tunes hyper-parameters of cost function during training process. Comprehensive experiments based on residential load data are implemented and the proposed interval prediction model outperforms the tested state-of-the-art algorithms, achieving a 15% reduction in prediction error and a 20% decrease in computational time.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf