Rattling-Induced Ultralow Lattice Thermal Conductivity Leads to High Thermoelectric Performance in GaAgSnSe4 and InAgGeSe4

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-10-03 DOI:10.1021/acsaem.4c0232210.1021/acsaem.4c02322
Sampad Mandal,  and , Pranab Sarkar*, 
{"title":"Rattling-Induced Ultralow Lattice Thermal Conductivity Leads to High Thermoelectric Performance in GaAgSnSe4 and InAgGeSe4","authors":"Sampad Mandal,&nbsp; and ,&nbsp;Pranab Sarkar*,&nbsp;","doi":"10.1021/acsaem.4c0232210.1021/acsaem.4c02322","DOIUrl":null,"url":null,"abstract":"<p >The thermal and electronic transport properties of Ag-based quaternary compounds, GaAgSnSe<sub>4</sub> and InAgGeSe<sub>4</sub>, have been explored by using density functional theory and the Boltzmann transport equation. Both the compounds exhibit ultralow lattice thermal conductivities (κ<sub>l</sub>) that originate from the anharmonicity induced by the rattling effects of the loosely bound Ag atoms in their crystals. The lattice thermal conductivities (κ<sub>l,<i>xx</i>(<i>yy</i>)</sub>, κ<sub>l,<i>zz</i></sub>) at 300 and 800 K are (0.19, 0.23) and (0.07, 0.08) W m<sup>–1</sup> K<sup>–1</sup>, respectively, for GaAgSnSe<sub>4</sub>, and those for InAgGeSe<sub>4</sub> are (1.07, 0.97) and (0.40, 0.36) W m<sup>–1</sup> K<sup>–1</sup>, respectively. Due to the huge and steep total density of states (TDOS) at the band edges in the vicinity of the Fermi level, both direct band gap semiconductors exhibit high Seebeck coefficients (<i>S</i>) with optimum electrical (σ) and electronic thermal conductivities (κ<sub>e</sub>). We have projected an outstanding figure of merit (<i>ZT</i>) for both the p-type and n-type of the two compounds. For the p-type and n-type GaAgSnSe<sub>4</sub>, the maximum <i>ZT</i> estimated at 800 K along the (<i>x</i>(<i>y</i>), <i>z</i>)-directions are (2.74, 2.35) and (2.51, 1.84), respectively; for the p-type and n-type InAgGeSe<sub>4</sub>, the values are (1.31, 1.20) and (0.94, 0.90), respectively. Our study suggests both GaAgSnSe<sub>4</sub> and InAgGeSe<sub>4</sub> as prospective thermoelectric materials.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 19","pages":"9023–9033 9023–9033"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02322","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal and electronic transport properties of Ag-based quaternary compounds, GaAgSnSe4 and InAgGeSe4, have been explored by using density functional theory and the Boltzmann transport equation. Both the compounds exhibit ultralow lattice thermal conductivities (κl) that originate from the anharmonicity induced by the rattling effects of the loosely bound Ag atoms in their crystals. The lattice thermal conductivities (κl,xx(yy), κl,zz) at 300 and 800 K are (0.19, 0.23) and (0.07, 0.08) W m–1 K–1, respectively, for GaAgSnSe4, and those for InAgGeSe4 are (1.07, 0.97) and (0.40, 0.36) W m–1 K–1, respectively. Due to the huge and steep total density of states (TDOS) at the band edges in the vicinity of the Fermi level, both direct band gap semiconductors exhibit high Seebeck coefficients (S) with optimum electrical (σ) and electronic thermal conductivities (κe). We have projected an outstanding figure of merit (ZT) for both the p-type and n-type of the two compounds. For the p-type and n-type GaAgSnSe4, the maximum ZT estimated at 800 K along the (x(y), z)-directions are (2.74, 2.35) and (2.51, 1.84), respectively; for the p-type and n-type InAgGeSe4, the values are (1.31, 1.20) and (0.94, 0.90), respectively. Our study suggests both GaAgSnSe4 and InAgGeSe4 as prospective thermoelectric materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纹波诱导的超低晶格热导率可提高 GaAgSnSe4 和 IngGeSe4 的热电性能
我们利用密度泛函理论和玻尔兹曼输运方程,探索了银基四元化合物 GaAgSnSe4 和 InAgGeSe4 的热和电子输运特性。这两种化合物都表现出超低的晶格热导率(κl),这是由于其晶体中松散结合的银原子的响动效应诱发了非谐波。在 300 K 和 800 K 时,GaAgSnSe4 的晶格热导率(κl,xx(yy), κl,zz)分别为(0.19, 0.23)和(0.07, 0.08)W m-1 K-1,InAgGeSe4 的晶格热导率分别为(1.07, 0.97)和(0.40, 0.36)W m-1 K-1。由于费米级附近的带边存在巨大而陡峭的总态密度(TDOS),这两种直接带隙半导体都表现出很高的塞贝克系数(S),具有最佳的电导率(σ)和电子热导率(κe)。我们预测这两种化合物的 p 型和 n 型都具有出色的性能指标(ZT)。对于 p 型和 n 型 GaAgSnSe4,在 800 K 时沿(x(y), z)方向估计的最大 ZT 分别为(2.74, 2.35)和(2.51, 1.84);对于 p 型和 n 型 InAgGeSe4,其值分别为(1.31, 1.20)和(0.94, 0.90)。我们的研究表明,GaAgSnSe4 和 IngGeSe4 都是具有发展前景的热电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Employees' Reactions to a Citizen Incivility Climate: A Multilevel Multisource Study. A Longitudinal Dynamic Perspective on Quality in Journalism: Investigating the Long-Term Macro-Level Media Effect of Suicide Reporting on Suicide Rates Across a Century. Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1