{"title":"Melanin-intercalated layered double hydroxide LDH/MNP as a stable photothermal agent","authors":"Xue Li, Yixuan Wang, Xinkai Geng, Jinghua Sun, Yulong Liu, Anjie Dong, Ruiping Zhang","doi":"10.1186/s13065-024-01312-1","DOIUrl":null,"url":null,"abstract":"<div><p>Melanin nanoparticles (MNPs) are a type of electronegative compound that can be used as photothermal agent for cancer treatment. Nevertheless, the agglomeration of MNP, which is one of the limitations in practice, contributes to the instability of MNP. Pristine layered double hydroxide (LDH), as a kind of positive inorganic material when there exist no other cargo between its layers, can accommodate electronegative molecules between its layers to endow them with stable properties. Hence, in this study, electronegative MNP was intercalated into LDH lamellas via ion-exchange method to obtain the stable original photothermal agent LDH/MNP, solving the tough problem of MNP’s agglomeration. The surface morphology, X-ray diffraction and fourier transform infrared spectra affirmed the successful intercalation of MNP between LDH lamellas. The Z-average particle sizes of LDH/MNP on day 0, 7 and 14 were measured as 221.8 nm, 227.6 nm and 230.5 nm without obvious fluctuation, while the particle sizes of MNP went through dramatic enlargement from 105.8 nm (day 0) to 856.1 nm (day 7), indicating the better stability of LDH/MNP than MNP. The typical polymer dispersity index (PDI) values on day 0, 7 and 14 verified the better stability of LDH/MNP, too. Photothermal properties of LDH/MNP were assessed and the results ensured the representative photothermal properties of LDH/MNP. The fine cytocompatibility of LDH/MNP was verified via cytotoxicity test. Results confirmed that the agglomeration of MNP disappeared after its intercalation into LDH and LDH/MNP possessed fine stability as well as typical photothermal property. The intercalation of MNP into LDH gave the photothermal agent MNP a promising way for its better stability and long-term availability in photothermal treatment.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01312-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01312-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Melanin nanoparticles (MNPs) are a type of electronegative compound that can be used as photothermal agent for cancer treatment. Nevertheless, the agglomeration of MNP, which is one of the limitations in practice, contributes to the instability of MNP. Pristine layered double hydroxide (LDH), as a kind of positive inorganic material when there exist no other cargo between its layers, can accommodate electronegative molecules between its layers to endow them with stable properties. Hence, in this study, electronegative MNP was intercalated into LDH lamellas via ion-exchange method to obtain the stable original photothermal agent LDH/MNP, solving the tough problem of MNP’s agglomeration. The surface morphology, X-ray diffraction and fourier transform infrared spectra affirmed the successful intercalation of MNP between LDH lamellas. The Z-average particle sizes of LDH/MNP on day 0, 7 and 14 were measured as 221.8 nm, 227.6 nm and 230.5 nm without obvious fluctuation, while the particle sizes of MNP went through dramatic enlargement from 105.8 nm (day 0) to 856.1 nm (day 7), indicating the better stability of LDH/MNP than MNP. The typical polymer dispersity index (PDI) values on day 0, 7 and 14 verified the better stability of LDH/MNP, too. Photothermal properties of LDH/MNP were assessed and the results ensured the representative photothermal properties of LDH/MNP. The fine cytocompatibility of LDH/MNP was verified via cytotoxicity test. Results confirmed that the agglomeration of MNP disappeared after its intercalation into LDH and LDH/MNP possessed fine stability as well as typical photothermal property. The intercalation of MNP into LDH gave the photothermal agent MNP a promising way for its better stability and long-term availability in photothermal treatment.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.