{"title":"Beyond the Holographic Entropy Cone via Cycle Flows","authors":"Temple He, Sergio Hernández-Cuenca, Cynthia Keeler","doi":"10.1007/s00220-024-05120-5","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by bit threads, we introduce a new prescription for computing entropy vectors outside the holographic entropy cone. By utilizing cycle flows on directed graphs, we show that the maximum cycle flow associated to any subset of vertices, which corresponds to a subsystem, manifestly obeys purification symmetry. Furthermore, by restricting ourselves to a subclass of directed graphs, we prove that the maximum cycle flow obeys both subadditivity and strong subadditivity, thereby establishing it as a viable candidate for the entropy associated to the subsystem. Finally, we demonstrate how our model generalizes the entropy vectors obtainable via conventional flows in undirected graphs, as well as conjecture that our model similarly generalizes the entropy vectors arising from hypergraphs.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05120-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by bit threads, we introduce a new prescription for computing entropy vectors outside the holographic entropy cone. By utilizing cycle flows on directed graphs, we show that the maximum cycle flow associated to any subset of vertices, which corresponds to a subsystem, manifestly obeys purification symmetry. Furthermore, by restricting ourselves to a subclass of directed graphs, we prove that the maximum cycle flow obeys both subadditivity and strong subadditivity, thereby establishing it as a viable candidate for the entropy associated to the subsystem. Finally, we demonstrate how our model generalizes the entropy vectors obtainable via conventional flows in undirected graphs, as well as conjecture that our model similarly generalizes the entropy vectors arising from hypergraphs.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.