{"title":"The highly conserved region within exonuclease III-like in PML-I regulates the cytoplasmic localization of PML-NBs.","authors":"Xinxin Liang,Jinwen Chen,Peijie Yan,Zhongzhou Chen,Chao Gao,Rulan Bai,Jun Tang","doi":"10.1016/j.jbc.2024.107872","DOIUrl":null,"url":null,"abstract":"The sub-nuclear protein structure PML-NB regulates a wide range of important cellular functions, while its abnormal cytoplasmic localization may have pathological consequences. However, the nature of this aberrant localization remains poorly understood. In this study, we unveil that PML-I, the most conserved and abundant structural protein of PML-NB, possesses potent cytoplasmic targeting ability within the N-terminal half of the exonuclease III-like domain encoded by its unique exon 9, independent of the known nuclear localization signal. Fusion of this region to PML-VI can relocate PML-VI from the nucleus to the cytosol. Structural and deletion analysis revealed that the cytoplasmic targeting ability of this domain was restrained by the sequences encoded by exon 8a and the 3' portion of exon 9 in PML-I. Deletion of either of these regions relocates PML-I to the cytosol. Furthermore, we observed a potential interaction between the ER-localized TREX1 and the cytoplasmic-located PML-I mutants. Our results suggest that perturbation of the EXO-like domain of PML-I may represent an important mode to translocate PMLs from the nucleus to the cytosol, thereby interfering with the normal nuclear functions of PML-NBs.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107872","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The sub-nuclear protein structure PML-NB regulates a wide range of important cellular functions, while its abnormal cytoplasmic localization may have pathological consequences. However, the nature of this aberrant localization remains poorly understood. In this study, we unveil that PML-I, the most conserved and abundant structural protein of PML-NB, possesses potent cytoplasmic targeting ability within the N-terminal half of the exonuclease III-like domain encoded by its unique exon 9, independent of the known nuclear localization signal. Fusion of this region to PML-VI can relocate PML-VI from the nucleus to the cytosol. Structural and deletion analysis revealed that the cytoplasmic targeting ability of this domain was restrained by the sequences encoded by exon 8a and the 3' portion of exon 9 in PML-I. Deletion of either of these regions relocates PML-I to the cytosol. Furthermore, we observed a potential interaction between the ER-localized TREX1 and the cytoplasmic-located PML-I mutants. Our results suggest that perturbation of the EXO-like domain of PML-I may represent an important mode to translocate PMLs from the nucleus to the cytosol, thereby interfering with the normal nuclear functions of PML-NBs.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.