Anamaria Hanganu, Maxim Maximov, Oana-Cristina Maximov, Codruta C. Popescu, Nicoleta Sandu, Mihaela Florea, Anca G. Mirea, Cristian Gârbea, Mihaela Matache, Daniel P. Funeriu
{"title":"Insights into Large-Scale Synthesis of Benfotiamine","authors":"Anamaria Hanganu, Maxim Maximov, Oana-Cristina Maximov, Codruta C. Popescu, Nicoleta Sandu, Mihaela Florea, Anca G. Mirea, Cristian Gârbea, Mihaela Matache, Daniel P. Funeriu","doi":"10.1021/acs.oprd.4c00351","DOIUrl":null,"url":null,"abstract":"There has been increased interest in the synthesis of benfotiamine during the past few years, most likely as a direct consequence of growing market demand. It has much higher bioavailability than thiamine (vitamin B1) and therefore is more suitable for therapeutic purposes, especially in oral form. We report herein our research in an academic-private R&D project in which we investigate all aspects of the process on small and large scales. The procedure involves two labor-intensive steps, starting from thiami3ne chloride hydrochloride with the key intermediate thiamine monophosphate phosphate (TMP─the phosphate ester of thiamine monophosphate). We obtained the crystalline form of benfotiamine directly from the synthesis in the crystalline form required on the market, as proven by XRD powder spectroscopy, IR, and RAMAN.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"43 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00351","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
There has been increased interest in the synthesis of benfotiamine during the past few years, most likely as a direct consequence of growing market demand. It has much higher bioavailability than thiamine (vitamin B1) and therefore is more suitable for therapeutic purposes, especially in oral form. We report herein our research in an academic-private R&D project in which we investigate all aspects of the process on small and large scales. The procedure involves two labor-intensive steps, starting from thiami3ne chloride hydrochloride with the key intermediate thiamine monophosphate phosphate (TMP─the phosphate ester of thiamine monophosphate). We obtained the crystalline form of benfotiamine directly from the synthesis in the crystalline form required on the market, as proven by XRD powder spectroscopy, IR, and RAMAN.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.