Towards Ultra High-Speed Hyperspectral Imaging by Integrating Compressive and Neuromorphic Sampling

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-10-14 DOI:10.1007/s11263-024-02236-y
Mengyue Geng, Lizhi Wang, Lin Zhu, Wei Zhang, Ruiqin Xiong, Yonghong Tian
{"title":"Towards Ultra High-Speed Hyperspectral Imaging by Integrating Compressive and Neuromorphic Sampling","authors":"Mengyue Geng, Lizhi Wang, Lin Zhu, Wei Zhang, Ruiqin Xiong, Yonghong Tian","doi":"10.1007/s11263-024-02236-y","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral and high-speed imaging are both important for scene representation and understanding. However, simultaneously capturing both hyperspectral and high-speed data is still under-explored. In this work, we propose a high-speed hyperspectral imaging system by integrating compressive sensing sampling with bioinspired neuromorphic sampling. Our system includes a coded aperture snapshot spectral imager capturing moderate-speed hyperspectral measurement frames and a spike camera capturing high-speed grayscale dense spike streams. The two cameras provide complementary dual-modality data for reconstructing high-speed hyperspectral videos (HSV). To effectively synergize the two sampling mechanisms and obtain high-quality HSV, we propose a unified multi-modal reconstruction framework. The framework consists of a Spike Spectral Prior Network for spike-based information extraction and prior regularization, coupled with a dual-modality iterative optimization algorithm for reliable reconstruction. We finally build a hardware prototype to verify the effectiveness of our system and algorithm design. Experiments on both simulated and real data demonstrate the superiority of the proposed approach, where for the first time to our knowledge, high-speed HSV with 30 spectral bands can be captured at a frame rate of up to 20,000 FPS.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02236-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral and high-speed imaging are both important for scene representation and understanding. However, simultaneously capturing both hyperspectral and high-speed data is still under-explored. In this work, we propose a high-speed hyperspectral imaging system by integrating compressive sensing sampling with bioinspired neuromorphic sampling. Our system includes a coded aperture snapshot spectral imager capturing moderate-speed hyperspectral measurement frames and a spike camera capturing high-speed grayscale dense spike streams. The two cameras provide complementary dual-modality data for reconstructing high-speed hyperspectral videos (HSV). To effectively synergize the two sampling mechanisms and obtain high-quality HSV, we propose a unified multi-modal reconstruction framework. The framework consists of a Spike Spectral Prior Network for spike-based information extraction and prior regularization, coupled with a dual-modality iterative optimization algorithm for reliable reconstruction. We finally build a hardware prototype to verify the effectiveness of our system and algorithm design. Experiments on both simulated and real data demonstrate the superiority of the proposed approach, where for the first time to our knowledge, high-speed HSV with 30 spectral bands can be captured at a frame rate of up to 20,000 FPS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整合压缩采样和神经形态采样实现超高速高光谱成像
高光谱和高速成像对于场景的呈现和理解都非常重要。然而,同时捕捉高光谱和高速数据的技术仍未得到充分探索。在这项工作中,我们提出了一种高速高光谱成像系统,它将压缩传感采样与生物启发神经形态采样整合在一起。我们的系统包括一个捕捉中等速度高光谱测量帧的编码孔径快照光谱成像仪和一个捕捉高速灰度密集尖峰流的尖峰相机。两台相机为重建高速高光谱视频(HSV)提供互补的双模态数据。为了有效协同两种采样机制并获得高质量的 HSV,我们提出了一个统一的多模态重建框架。该框架包括一个用于基于尖峰信息提取和先验正则化的尖峰光谱先验网络,以及一个用于可靠重建的双模态迭代优化算法。最后,我们建立了一个硬件原型,以验证我们的系统和算法设计的有效性。在模拟数据和真实数据上进行的实验证明了所建议方法的优越性,据我们所知,这是第一次能以高达 20,000 FPS 的帧速率捕获 30 个光谱带的高速 HSV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification Warping the Residuals for Image Editing with StyleGAN Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation Feature Matching via Graph Clustering with Local Affine Consensus Learning to Detect Novel Species with SAM in the Wild
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1