Redox-mediated decoupled seawater direct splitting for H2 production

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-15 DOI:10.1038/s41467-024-53335-w
Tao Liu, Cheng Lan, Min Tang, Mengxin Li, Yitao Xu, Hangrui Yang, Qingyue Deng, Wenchuan Jiang, Zhiyu Zhao, Yifan Wu, Heping Xie
{"title":"Redox-mediated decoupled seawater direct splitting for H2 production","authors":"Tao Liu, Cheng Lan, Min Tang, Mengxin Li, Yitao Xu, Hangrui Yang, Qingyue Deng, Wenchuan Jiang, Zhiyu Zhao, Yifan Wu, Heping Xie","doi":"10.1038/s41467-024-53335-w","DOIUrl":null,"url":null,"abstract":"<p>Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O<sub>2</sub> evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)<sub>6</sub>]<sup>3−/4−</sup>) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm<sup>−2</sup> and ~1.57 V at 100 mA cm<sup>−2</sup>) and maintaining stability even in a Cl<sup>−</sup>-saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53335-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O2 evolution reactor is established. Ferricyanide/ferrocyanide ([Fe(CN)6]3−/4−) serves as an electron-mediator between the cell and the reactor, thereby enabling a more dynamically favorable half-reaction to supplant the traditional oxygen evolution reaction (OER). This alteration involves a straightforward, single-electron-transfer anodic reaction without gas precipitation and effectively eliminates the generation of chlorine-containing byproducts. By operating at low voltages (~1.37 V at 10 mA cm−2 and ~1.57 V at 100 mA cm−2) and maintaining stability even in a Cl-saturated seawater electrolyte, this system has the potential of undergoing decoupled seawater electrolysis with zero chlorine emissions. Further improvements in the high-performance redox-mediators and catalysts can provide enhanced cost-effectiveness and sustainability of the DSDE system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化还原介导的解耦海水直接分裂制取 H2
利用可再生能源进行海水直接电解(SDE)为利用丰富的海洋氢资源提供了一条可持续发展的途径。然而,氯电氧化反应(ClOR)的副反应严重降低了海水直接电解的效率,并逐渐腐蚀阳极。本研究引入了一种氧化还原介导的策略来抑制 ClOR,并建立了一个包含独立氧气进化反应器的解耦海水直接电解(DSDE)系统。铁氰化物/铁氰化物([Fe(CN)6]3-/4-)作为电池和反应器之间的电子介质,从而实现了更有利的半反应,取代了传统的氧进化反应(OER)。这种改变是一种直接的单电子转移阳极反应,没有气体析出,并有效地消除了含氯副产物的产生。通过在低电压下运行(10 mA cm-2 时 ~1.37 V,100 mA cm-2 时 ~1.57 V)并在 Cl 饱和的海水电解质中保持稳定,该系统有可能在零氯排放的情况下进行解耦海水电解。进一步改进高性能氧化还原介质和催化剂可以提高 DSDE 系统的成本效益和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Enantioselective construction of C-B axially chiral alkenylborons by nickel-catalyzed radical relayed reductive coupling Photochemically-enabled, post-translational production of C-terminal amides Reply to: An approach to the resolution of the dispute on collective atomic interactions SARS-CoV-2 human challenge reveals biomarkers that discriminate early and late phases of respiratory viral infections Roles of SNORD115 and SNORD116 ncRNA clusters during neuronal differentiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1