He irradiation resistance performance in CrNiCo, CrFeNiCo, and CrFeMnNiCo multi-principal element alloys

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-09-30 DOI:10.1016/j.jnucmat.2024.155432
Q. Xu , H.Q. Guan , S.S. Huang , Z.H. Zhong , M. Miyamoto , K. Yasunaga , A. Yabuuch
{"title":"He irradiation resistance performance in CrNiCo, CrFeNiCo, and CrFeMnNiCo multi-principal element alloys","authors":"Q. Xu ,&nbsp;H.Q. Guan ,&nbsp;S.S. Huang ,&nbsp;Z.H. Zhong ,&nbsp;M. Miyamoto ,&nbsp;K. Yasunaga ,&nbsp;A. Yabuuch","doi":"10.1016/j.jnucmat.2024.155432","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the He irradiation resistance of CrFeMnNiCo high-entropy alloy (HEA) and CrNiCo and CrFeNiCo medium-entropy alloys (MEAs), which have better mechanical properties than HEAs, was investigated. Thin-film samples of CrFeMnNiCo, CrNiCo, and CrFeNiCo were irradiated with up to 2 × 10<sup>20</sup> He/m<sup>2</sup> of 5 keV ions at 673, 773, and 873 K, respectively. In all samples, He bubble formation was observed when irradiated at 1–3 × 10<sup>19</sup> He/m<sup>2</sup>, which depended on the irradiation temperature. At low temperatures of 673 and 773 K, even when as the irradiation dose increased to 2 × 10<sup>20</sup> He/m<sup>2</sup>, the differences in cavity swelling due to He bubble formation among the three alloys were not large. The relative resistance (degree) to cavity swelling for the three investigated alloys was as follows: CrNiCo MEA, CrFeMnNiCo HEA, and CrFeNiCo MEA. First-principles calculation results revealed that the formation of He-di-vacancy clusters was not possible in the CrFeNiCo MEA. This is believed to be the cause of the cavity swelling decrease in the CrFeNiCo MEA. In contrast, after 2 × 10<sup>20</sup> He/m<sup>2</sup> at 873 K, the cavity swelling of the CrNiCo and CrFeNiCo MEAs, especially CrNiCo, was approximately four times higher than that of the CrFeMnNiCo HEA. It is believed that the He irradiation resistance of the MEAs deteriorated because of element segregation owing to high–temperature irradiation.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155432"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005336","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the He irradiation resistance of CrFeMnNiCo high-entropy alloy (HEA) and CrNiCo and CrFeNiCo medium-entropy alloys (MEAs), which have better mechanical properties than HEAs, was investigated. Thin-film samples of CrFeMnNiCo, CrNiCo, and CrFeNiCo were irradiated with up to 2 × 1020 He/m2 of 5 keV ions at 673, 773, and 873 K, respectively. In all samples, He bubble formation was observed when irradiated at 1–3 × 1019 He/m2, which depended on the irradiation temperature. At low temperatures of 673 and 773 K, even when as the irradiation dose increased to 2 × 1020 He/m2, the differences in cavity swelling due to He bubble formation among the three alloys were not large. The relative resistance (degree) to cavity swelling for the three investigated alloys was as follows: CrNiCo MEA, CrFeMnNiCo HEA, and CrFeNiCo MEA. First-principles calculation results revealed that the formation of He-di-vacancy clusters was not possible in the CrFeNiCo MEA. This is believed to be the cause of the cavity swelling decrease in the CrFeNiCo MEA. In contrast, after 2 × 1020 He/m2 at 873 K, the cavity swelling of the CrNiCo and CrFeNiCo MEAs, especially CrNiCo, was approximately four times higher than that of the CrFeMnNiCo HEA. It is believed that the He irradiation resistance of the MEAs deteriorated because of element segregation owing to high–temperature irradiation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铬镍钴、铬铁镍钴和铬铁镍钴多主元合金的耐氦辐照性能
本研究调查了铬铁镍钴高熵合金 (HEA) 以及比 HEA 具有更好机械性能的铬镍钴和铬铁镍钴中熵合金 (MEA) 的抗 He 辐照性能。分别在 673、773 和 873 K 下用高达 2 × 1020 He/m2 的 5 keV 离子辐照了铬铁镍钴、铬镍钴和铬铁镍钴薄膜样品。所有样品在 1-3 × 1019 He/m2 的辐照条件下都观察到 He 气泡的形成,这取决于辐照温度。在 673 和 773 K 的低温下,即使辐照剂量增加到 2 × 1020 He/m2,三种合金因 He 气泡形成而导致的空穴膨胀差异也不大。所研究的三种合金对空腔膨胀的相对抵抗力(程度)如下:铬镍钴 MEA、铬铁镍钴 HEA 和铬铁镍钴 MEA。第一性原理计算的结果表明,在铬镍钴 MEA 中不可能形成氦-二空位簇。这被认为是 CrFeNiCo MEA 中空穴膨胀减小的原因。相比之下,在 873 K 下 2 × 1020 He/m2 的辐照下,CrNiCo 和 CrFeNiCo MEA(尤其是 CrNiCo)的空穴膨胀率比 CrFeMnNiCo HEA 高出约四倍。据认为,由于高温辐照导致元素偏析,MEA 的耐 He 辐照性能变差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1