On the theory of the nucleation of gas bubbles at grain boundaries and incoherent inclusions

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-10-05 DOI:10.1016/j.jnucmat.2024.155443
M.S. Veshchunov
{"title":"On the theory of the nucleation of gas bubbles at grain boundaries and incoherent inclusions","authors":"M.S. Veshchunov","doi":"10.1016/j.jnucmat.2024.155443","DOIUrl":null,"url":null,"abstract":"<div><div>On the base of the critical analysis of two-dimensional models of the nucleation of gas filled bubbles at grain boundaries of helium-implanted specimens under the action of tensile stresses, a new model is developed within the framework of the Reiss theory of homogeneous nucleation in binary systems. This approach considers that gas bubbles are formed as a result of agglomeration in a binary system of vacancies and gas atoms at grain boundaries, avoiding significant simplifications of previous models based on the classical nucleation theory for single-component (unary) systems. The new model is extended to consider the nucleation of Xe bubbles at grain boundaries in UO<sub>2</sub> under irradiation conditions and can be used for numerical analysis of experimental observations after the foreseen implementation in a fuel performance code. A similar approach can be applied to the nucleation and growth of gas bubbles on incoherent inclusions, such as those observed in irradiated ODS steels.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155443"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005439","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On the base of the critical analysis of two-dimensional models of the nucleation of gas filled bubbles at grain boundaries of helium-implanted specimens under the action of tensile stresses, a new model is developed within the framework of the Reiss theory of homogeneous nucleation in binary systems. This approach considers that gas bubbles are formed as a result of agglomeration in a binary system of vacancies and gas atoms at grain boundaries, avoiding significant simplifications of previous models based on the classical nucleation theory for single-component (unary) systems. The new model is extended to consider the nucleation of Xe bubbles at grain boundaries in UO2 under irradiation conditions and can be used for numerical analysis of experimental observations after the foreseen implementation in a fuel performance code. A similar approach can be applied to the nucleation and growth of gas bubbles on incoherent inclusions, such as those observed in irradiated ODS steels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于在晶界和不连贯夹杂物上的气泡成核理论
在对拉伸应力作用下植入氦气的试样晶界上充满气体的气泡成核的二维模型进行批判性分析的基础上,在二元体系中均匀成核的雷斯理论框架内开发了一个新模型。这种方法认为气泡的形成是空位和气体原子在晶界的二元体系中聚集的结果,避免了以往基于经典成核理论的单组分(一元)体系模型的重大简化。新模型可扩展用于考虑辐照条件下二氧化钛晶界处 Xe 气泡的成核问题,并可在预期的燃料性能代码实施后用于实验观测的数值分析。类似的方法也可应用于非相干夹杂物上气泡的成核和生长,例如在辐照 ODS 钢中观察到的气泡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1