Recrystallization of amorphous AlNbCr coatings irradiated with chromium ions

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-10-09 DOI:10.1016/j.jnucmat.2024.155449
Jiyong Huang , Yipeng Li , Yifan Ding , Jiacheng Ren , Ziqi Cao , Guang Ran
{"title":"Recrystallization of amorphous AlNbCr coatings irradiated with chromium ions","authors":"Jiyong Huang ,&nbsp;Yipeng Li ,&nbsp;Yifan Ding ,&nbsp;Jiacheng Ren ,&nbsp;Ziqi Cao ,&nbsp;Guang Ran","doi":"10.1016/j.jnucmat.2024.155449","DOIUrl":null,"url":null,"abstract":"<div><div>Applying an AlNbCr layer on the surface of Zr alloys significantly enhances the alloy resistance to oxidation and high-temperature corrosion. However, the effects of irradiation on AlNbCr coating remain largely unexplored. This work investigates the microstructural evolution of Cr ion-irradiated AlNbCr coatings under varying temperatures, utilizing bright-field transmission electron microscopy (TEM) observations and electron diffraction pattern analyses. With increasing Cr ion irradiation dose, the coatings gradually transitioned from an initial amorphous to a crystalline state. The onset of crystallization occurred earlier at higher temperatures, indicating that the crystallization process was significantly influenced by temperature. Moreover, the dynamic crystallization process of the crystalline structure was also analyzed, as well as the different irradiation responses at the Near-Interface Area (NIA) and Far-Interface Area (FIA). These findings provide new insights for understanding and optimizing the performance of AlNbCr coatings in high-irradiation environments.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155449"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152400549X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Applying an AlNbCr layer on the surface of Zr alloys significantly enhances the alloy resistance to oxidation and high-temperature corrosion. However, the effects of irradiation on AlNbCr coating remain largely unexplored. This work investigates the microstructural evolution of Cr ion-irradiated AlNbCr coatings under varying temperatures, utilizing bright-field transmission electron microscopy (TEM) observations and electron diffraction pattern analyses. With increasing Cr ion irradiation dose, the coatings gradually transitioned from an initial amorphous to a crystalline state. The onset of crystallization occurred earlier at higher temperatures, indicating that the crystallization process was significantly influenced by temperature. Moreover, the dynamic crystallization process of the crystalline structure was also analyzed, as well as the different irradiation responses at the Near-Interface Area (NIA) and Far-Interface Area (FIA). These findings provide new insights for understanding and optimizing the performance of AlNbCr coatings in high-irradiation environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铬离子辐照下无定形 AlNbCr 涂层的再结晶
在 Zr 合金表面涂覆 AlNbCr 层可显著增强合金的抗氧化性和耐高温腐蚀性。然而,辐照对 AlNbCr 涂层的影响在很大程度上仍未得到研究。本研究利用明视场透射电子显微镜(TEM)观察和电子衍射图案分析,研究了不同温度下铬离子辐照 AlNbCr 涂层的微观结构演变。随着铬离子辐照剂量的增加,涂层从最初的无定形状态逐渐过渡到结晶状态。温度越高,开始结晶的时间越早,这表明结晶过程受温度的影响很大。此外,还分析了结晶结构的动态结晶过程,以及近界面区(NIA)和远界面区(FIA)的不同辐照响应。这些发现为理解和优化 AlNbCr 涂层在高辐照环境下的性能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1