{"title":"The effect of deuterium on defect production in irradiated tungsten","authors":"V. Lindblad , D.R. Mason , F. Granberg","doi":"10.1016/j.jnucmat.2024.155422","DOIUrl":null,"url":null,"abstract":"<div><div>For fusion test reactors and power plants, one significant concern is the retention of hydrogen isotopes in the wall materials. The build-up of the radioactive and scarce fuel isotope tritium is of special concern, but knowing the retention of the other isotopes, such as deuterium, is also important. Deuterium is known to affect the mechanical properties of the wall material and most experiments are carried out on deuterium retention as it is safer to use than tritium. In addition to affecting the mechanical properties of the wall material, deuterium retention has been observed to affect the defect accumulation in the material. In this study, we investigate the phenomena and mechanisms responsible for the greater defect accumulation observed in tungsten when deuterium is present during irradiation. This is achieved computationally, utilizing molecular dynamics simulations and appropriate analysis tools. We found that deuterium will affect both the primary defect production as well as the recombination rate of defects in irradiated tungsten.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155422"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005233","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For fusion test reactors and power plants, one significant concern is the retention of hydrogen isotopes in the wall materials. The build-up of the radioactive and scarce fuel isotope tritium is of special concern, but knowing the retention of the other isotopes, such as deuterium, is also important. Deuterium is known to affect the mechanical properties of the wall material and most experiments are carried out on deuterium retention as it is safer to use than tritium. In addition to affecting the mechanical properties of the wall material, deuterium retention has been observed to affect the defect accumulation in the material. In this study, we investigate the phenomena and mechanisms responsible for the greater defect accumulation observed in tungsten when deuterium is present during irradiation. This is achieved computationally, utilizing molecular dynamics simulations and appropriate analysis tools. We found that deuterium will affect both the primary defect production as well as the recombination rate of defects in irradiated tungsten.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.