{"title":"Business process simulation: Probabilistic modeling of intermittent resource availability and multitasking behavior","authors":"Orlenys López-Pintado, Marlon Dumas","doi":"10.1016/j.is.2024.102471","DOIUrl":null,"url":null,"abstract":"<div><div>In business process simulation, resource availability is typically modeled by assigning a calendar to each resource, e.g., Monday–Friday, 9:00–18:00. Resources are assumed to be always available during each time slot in their availability calendar. This assumption often becomes invalid due to interruptions, breaks, or time-sharing across processes. In other words, existing approaches fail to capture intermittent availability. Another limitation of existing approaches is that they either do not consider multitasking behavior, or if they do, they assume that resources always multitask (up to a maximum capacity) whenever available. However, studies have shown that the multitasking patterns vary across days. This paper introduces a probabilistic approach to model resource availability and multitasking behavior for business process simulation. In this approach, each time slot in a resource calendar has an associated availability probability and a multitasking probability per multitasking level. For example, a resource may be available on Fridays between 14:00–15:00 with 90% probability, and given that they are performing one task during this slot, they may take on a second concurrent task with 60% probability. We propose algorithms to discover probabilistic calendars and probabilistic multitasking capacities from event logs. An evaluation shows that, with these enhancements, simulation models discovered from event logs better replicate the distribution of activities and cycle times, relative to approaches with crisp calendars and monotasking assumptions.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"127 ","pages":"Article 102471"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001297","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In business process simulation, resource availability is typically modeled by assigning a calendar to each resource, e.g., Monday–Friday, 9:00–18:00. Resources are assumed to be always available during each time slot in their availability calendar. This assumption often becomes invalid due to interruptions, breaks, or time-sharing across processes. In other words, existing approaches fail to capture intermittent availability. Another limitation of existing approaches is that they either do not consider multitasking behavior, or if they do, they assume that resources always multitask (up to a maximum capacity) whenever available. However, studies have shown that the multitasking patterns vary across days. This paper introduces a probabilistic approach to model resource availability and multitasking behavior for business process simulation. In this approach, each time slot in a resource calendar has an associated availability probability and a multitasking probability per multitasking level. For example, a resource may be available on Fridays between 14:00–15:00 with 90% probability, and given that they are performing one task during this slot, they may take on a second concurrent task with 60% probability. We propose algorithms to discover probabilistic calendars and probabilistic multitasking capacities from event logs. An evaluation shows that, with these enhancements, simulation models discovered from event logs better replicate the distribution of activities and cycle times, relative to approaches with crisp calendars and monotasking assumptions.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.