Investigation of the effect of phosphonate antiscalants on the reverse osmosis membranes' permeation and desalination performance in mine wastewater treatment process
{"title":"Investigation of the effect of phosphonate antiscalants on the reverse osmosis membranes' permeation and desalination performance in mine wastewater treatment process","authors":"Jiapeng Li, Yunhuan Chen, Hailong Wang, Xinyue Liu, Yulong Ma, Yongsheng Ren","doi":"10.1016/j.jwpe.2024.106310","DOIUrl":null,"url":null,"abstract":"<div><div>Contaminants in mine wastewater treatment processes can significantly impact the performance of reverse osmosis (RO) membranes. Antiscalants are commonly applied to the RO process to mitigate the deterioration of membrane permeation efficiency caused by fouling. Therefore, it is essential to gain an understanding of the role played by anti-scaling agents in RO operations. This work investigates the effects of three commonly used phosphonate antiscalants, namely ATMP (aminotris (methylenephosphonic acid)), HEDP (1-hydroxyethylidene-1, 1-bis (phosphonic acid)), and PBTC (2-phosphonobutane-1, 2, 4-tricarboxylic acid), on the permeation and desalination performances of RO membranes. The results showed that the presence of phosphonate antiscalants effectively inhibits interactions between components and between components and RO membranes, thereby enhancing membrane flux levels. However, the inhibitors may interact with the membrane surface and alter its properties, significantly affecting membrane performance. Excessive addition of antiscalants increases membrane contamination and deviates membrane flux from optimal levels. Furthermore, adding phosphonate inhibitors significantly affects the membrane retention efficiency of inorganic salt components and the extent to which the membrane retains organic wastewater components. This work provides insight into the role of phosphonate antiscalants in treating wastewater with soluble silica. It may offer a theoretical foundation for standardizing the use of antiscalants in industrial wastewater.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"68 ","pages":"Article 106310"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424015423","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Contaminants in mine wastewater treatment processes can significantly impact the performance of reverse osmosis (RO) membranes. Antiscalants are commonly applied to the RO process to mitigate the deterioration of membrane permeation efficiency caused by fouling. Therefore, it is essential to gain an understanding of the role played by anti-scaling agents in RO operations. This work investigates the effects of three commonly used phosphonate antiscalants, namely ATMP (aminotris (methylenephosphonic acid)), HEDP (1-hydroxyethylidene-1, 1-bis (phosphonic acid)), and PBTC (2-phosphonobutane-1, 2, 4-tricarboxylic acid), on the permeation and desalination performances of RO membranes. The results showed that the presence of phosphonate antiscalants effectively inhibits interactions between components and between components and RO membranes, thereby enhancing membrane flux levels. However, the inhibitors may interact with the membrane surface and alter its properties, significantly affecting membrane performance. Excessive addition of antiscalants increases membrane contamination and deviates membrane flux from optimal levels. Furthermore, adding phosphonate inhibitors significantly affects the membrane retention efficiency of inorganic salt components and the extent to which the membrane retains organic wastewater components. This work provides insight into the role of phosphonate antiscalants in treating wastewater with soluble silica. It may offer a theoretical foundation for standardizing the use of antiscalants in industrial wastewater.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies