Xiaowu Liu, Wanqing Li, Yuliang Zhou, Duoduo Zhu, Xin Chen, Kun Liu
{"title":"Facile one-pot synthesis of Bi2S3 nanorod @ N, S co-doped carbon composite for high performance lithium ion batteries","authors":"Xiaowu Liu, Wanqing Li, Yuliang Zhou, Duoduo Zhu, Xin Chen, Kun Liu","doi":"10.1016/j.jelechem.2024.118714","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth sulfide is favoured in lithium ion batteries due to its high specific capacity of 625 mAh/g. However, the Bi<sub>2</sub>S<sub>3</sub> anode faces severe volume expansion problems during the lithium intercalation process, resulting in continuous electrode fragmentation and rapid degradation of lithium storage performance. In this study, Bi<sub>2</sub>S<sub>3</sub> nanorod@N, S co-doped carbon composite prepared by a simple sintering method was used as the anode material for lithium ion batteries. 1D Bi<sub>2</sub>S<sub>3</sub> nanorods with a length of 1 μm and a diameter of 50 nm were loaded in situ on 2D N, S co-doped carbon nanosheets. This unique structure can not only alleviate the volume change of bismuth sulfide, but also effectively shorten the diffusion distance of lithium ions, thereby improving the cycling stability and rate capability at the same time. The discharge capacity of Bi<sub>2</sub>S<sub>3</sub>@N, S<img>C remained at 583.4 mAh g <sup>–1</sup> after 400 cycles at 0.5 A g<sup>–1</sup>. Even at a high current density of 2 A/g, the discharge capacity of Bi<sub>2</sub>S<sub>3</sub>@N, S<img>C still reached 374.3 mAh g <sup>–1</sup>. This simple method also can be extended to the preparation of other metal sulfide composites.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118714"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724006921","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bismuth sulfide is favoured in lithium ion batteries due to its high specific capacity of 625 mAh/g. However, the Bi2S3 anode faces severe volume expansion problems during the lithium intercalation process, resulting in continuous electrode fragmentation and rapid degradation of lithium storage performance. In this study, Bi2S3 nanorod@N, S co-doped carbon composite prepared by a simple sintering method was used as the anode material for lithium ion batteries. 1D Bi2S3 nanorods with a length of 1 μm and a diameter of 50 nm were loaded in situ on 2D N, S co-doped carbon nanosheets. This unique structure can not only alleviate the volume change of bismuth sulfide, but also effectively shorten the diffusion distance of lithium ions, thereby improving the cycling stability and rate capability at the same time. The discharge capacity of Bi2S3@N, SC remained at 583.4 mAh g –1 after 400 cycles at 0.5 A g–1. Even at a high current density of 2 A/g, the discharge capacity of Bi2S3@N, SC still reached 374.3 mAh g –1. This simple method also can be extended to the preparation of other metal sulfide composites.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.