Sohrab Khan , Sheharyar Khan , Adel Sulaiman , Mana Saleh Al Reshan , Hani Alshahrani , Asadullah Shaikh
{"title":"Deep neural network and trust management approach to secure smart transportation data in sustainable smart cities","authors":"Sohrab Khan , Sheharyar Khan , Adel Sulaiman , Mana Saleh Al Reshan , Hani Alshahrani , Asadullah Shaikh","doi":"10.1016/j.icte.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>Smart transportation, powered by IoT, transforms mobility with interconnected sensors and devices collecting real-time data on traffic, vehicle locations, and passenger needs. This fosters a safer and more sustainable transportation ecosystem, optimizing traffic flow and enhancing public transit efficiency. However, security and privacy challenges emerge in smart transportation systems. Our proposed solution involves a deep neural network (DNN) model trained on extensive datasets from sustainable cities, incorporating historical information like traffic patterns and sensor readings. This model identifies potential malicious nodes, achieving a 90% accuracy rate in predicting threats such as Denial of Service 88%, Whitewash attacks 80%, and Brute Force attacks 75%. This high precision ensures the security and privacy of passenger vehicle data and routes.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 5","pages":"Pages 1059-1065"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000936","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart transportation, powered by IoT, transforms mobility with interconnected sensors and devices collecting real-time data on traffic, vehicle locations, and passenger needs. This fosters a safer and more sustainable transportation ecosystem, optimizing traffic flow and enhancing public transit efficiency. However, security and privacy challenges emerge in smart transportation systems. Our proposed solution involves a deep neural network (DNN) model trained on extensive datasets from sustainable cities, incorporating historical information like traffic patterns and sensor readings. This model identifies potential malicious nodes, achieving a 90% accuracy rate in predicting threats such as Denial of Service 88%, Whitewash attacks 80%, and Brute Force attacks 75%. This high precision ensures the security and privacy of passenger vehicle data and routes.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.