{"title":"A physical stochastic model of near-surface fluctuating wind fields","authors":"Xin Yang , Jie Li","doi":"10.1016/j.jweia.2024.105916","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling and simulation of atmospheric turbulence in coastal areas has emerged as a prominent area of research in recent years. This study presents a physical stochastic model to describe the horizontal coherence of fluctuating wind fields within the physical stochastic modeling frame. Based on the one-dimensional stochastic Fourier spectrum and isotropic turbulence theory, the horizontal coherence for fluctuating wind fields is expressed as a random function, with its probability information determined by the physical mechanism/background. The proposed physical stochastic model directly depicts the stochastic time series thereby enabling it to capture all probability information in detail comprehensively. The proposed model is numerically validated with the measured data obtained from an observation array constructed in Southeast China. This investigation holds significant potential for its application in wind-resistance design and reliability assessment of long-span structures.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105916"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002794","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling and simulation of atmospheric turbulence in coastal areas has emerged as a prominent area of research in recent years. This study presents a physical stochastic model to describe the horizontal coherence of fluctuating wind fields within the physical stochastic modeling frame. Based on the one-dimensional stochastic Fourier spectrum and isotropic turbulence theory, the horizontal coherence for fluctuating wind fields is expressed as a random function, with its probability information determined by the physical mechanism/background. The proposed physical stochastic model directly depicts the stochastic time series thereby enabling it to capture all probability information in detail comprehensively. The proposed model is numerically validated with the measured data obtained from an observation array constructed in Southeast China. This investigation holds significant potential for its application in wind-resistance design and reliability assessment of long-span structures.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.