{"title":"Influence of water vapor partial pressure on self-healing and oxidation of SiC-dispersed yttrium silicate composites","authors":"Huong Thi Nguyen , Yen-Ling Kuo , Makoto Nanko","doi":"10.1016/j.jeurceramsoc.2024.116967","DOIUrl":null,"url":null,"abstract":"<div><div>The self-healing and oxidation behavior of SiC-dispersed Y<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>-Y<sub>2</sub>SiO<sub>5</sub> composites were elucidated under various water vapor partial pressures <span><math><msub><mrow><mi>P</mi></mrow><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></msub></math></span>. Samples were exposed in a furnace for self-healing experiments at 1100–1300°C and for high-temperature oxidation at 1200–1400°C, both for 1–24 h, under <span><math><msub><mrow><mi>P</mi></mrow><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></msub></math></span> ranging from 2×10<sup>4</sup> to 5×10<sup>4</sup> Pa, while keeping <span><math><msub><mrow><mi>P</mi></mrow><mrow><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>constant at 2×10<sup>4</sup> Pa. Water vapor promoted the self-healing effectiveness of the composites. A mechanism contributing to the closure of surface cracks was consistent with volume expansion derived from the oxidative conversion of SiC into SiO<sub>2</sub> and the outward diffusion of yttrium cations. The formation of the internally oxidized zone signifies oxidation behavior, resulting from the inward diffusion of oxygen ions. Growth of the internally oxidized zone obeys the parabolic pattern. The influence of <span><math><msub><mrow><mi>P</mi></mrow><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></msub></math></span> on the high-temperature oxidation of SiC/Y<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>-Y<sub>2</sub>SiO<sub>5</sub> is discussed in this study.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116967"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008409","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The self-healing and oxidation behavior of SiC-dispersed Y2Si2O7-Y2SiO5 composites were elucidated under various water vapor partial pressures . Samples were exposed in a furnace for self-healing experiments at 1100–1300°C and for high-temperature oxidation at 1200–1400°C, both for 1–24 h, under ranging from 2×104 to 5×104 Pa, while keeping constant at 2×104 Pa. Water vapor promoted the self-healing effectiveness of the composites. A mechanism contributing to the closure of surface cracks was consistent with volume expansion derived from the oxidative conversion of SiC into SiO2 and the outward diffusion of yttrium cations. The formation of the internally oxidized zone signifies oxidation behavior, resulting from the inward diffusion of oxygen ions. Growth of the internally oxidized zone obeys the parabolic pattern. The influence of on the high-temperature oxidation of SiC/Y2Si2O7-Y2SiO5 is discussed in this study.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.