{"title":"Nanotechnology-enabled rapid investment casting of high-performance wrought aluminum alloys","authors":"Yitian Chi , Xiaochun Li","doi":"10.1016/j.mfglet.2024.09.040","DOIUrl":null,"url":null,"abstract":"<div><div>High-performance wrought aluminium alloys are widely used in automobiles and aerospace industries owing to their high-volume precipitates after heat treatment. Investment casting as one of the precision manufacturing methods provides great potential to achieve excellent surface finishes and complex geometry for aluminium alloy components. However, these high-performance aluminium alloys are almost impossible to be investment cast due to their hot cracking susceptibility and severe shrinkage during solidification. In this study, we introduce nanotechnology to improve the processability of high-performance wrought aluminium alloys in investment casting by adding a small volume fraction of nanoparticles into the aluminium alloys. This work showed the unprecedented success of nanotechnology-enabled investment casting of high-strength wrought aluminium alloys (AA6061, AA2024, and AA7075) for excellent mechanical properties.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 339-343"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324001020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance wrought aluminium alloys are widely used in automobiles and aerospace industries owing to their high-volume precipitates after heat treatment. Investment casting as one of the precision manufacturing methods provides great potential to achieve excellent surface finishes and complex geometry for aluminium alloy components. However, these high-performance aluminium alloys are almost impossible to be investment cast due to their hot cracking susceptibility and severe shrinkage during solidification. In this study, we introduce nanotechnology to improve the processability of high-performance wrought aluminium alloys in investment casting by adding a small volume fraction of nanoparticles into the aluminium alloys. This work showed the unprecedented success of nanotechnology-enabled investment casting of high-strength wrought aluminium alloys (AA6061, AA2024, and AA7075) for excellent mechanical properties.