{"title":"Investigations on ironing parameters in screw extrusion additive manufacturing (SEAM)","authors":"Yash Gopal Mittal , Gopal Gote , Yogesh Patil , Avinash Kumar Mehta , Pushkar Kamble , K.P. Karunakaran","doi":"10.1016/j.mfglet.2024.09.102","DOIUrl":null,"url":null,"abstract":"<div><div><em>Additive Manufacturing</em> (AM) is a novel manufacturing process that enables the physical realization of a given 3D model via layered deposition. <em>Material extrusion</em> (MEX) is one of the most widely used forms of the various AM techniques, in which the <em>screw extrusion</em>-based AM (SEAM) processing offers the most versatile characteristics, in terms of material handling and flow rate capacities. It involves continuous extrusion of the semi-solid material via an extruder screw. Ironing is a common practice in MEX techniques, to maintain <em>z</em>-height and improve the surface morphologies while deposition. Most commercially used nozzles for MEX are thin-walled, such that the ratio of the nozzle width to the diameter (<em>w/d</em>) is close to 1. In this research, investigations on the ironing effect during screw extrusion-based material deposition are explored using a set of wider nozzles (<em>w/d</em> as high as 40). Special emphasis is laid on the deposited surface finish, interlayer strength, and geometrical conformance of the extrusion. The nozzle diameter and the <em>stand-off distance</em> (SOD) are also independently varied. It is found that the best dimensional stability is achieved when the SOD is set between 75 % and 100 % of the nozzle diameter. Ironing improved the surface finish and the interlayer strength in all instances, with an average improvement of 50 % and 200 %, respectively.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 822-831"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324001652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive Manufacturing (AM) is a novel manufacturing process that enables the physical realization of a given 3D model via layered deposition. Material extrusion (MEX) is one of the most widely used forms of the various AM techniques, in which the screw extrusion-based AM (SEAM) processing offers the most versatile characteristics, in terms of material handling and flow rate capacities. It involves continuous extrusion of the semi-solid material via an extruder screw. Ironing is a common practice in MEX techniques, to maintain z-height and improve the surface morphologies while deposition. Most commercially used nozzles for MEX are thin-walled, such that the ratio of the nozzle width to the diameter (w/d) is close to 1. In this research, investigations on the ironing effect during screw extrusion-based material deposition are explored using a set of wider nozzles (w/d as high as 40). Special emphasis is laid on the deposited surface finish, interlayer strength, and geometrical conformance of the extrusion. The nozzle diameter and the stand-off distance (SOD) are also independently varied. It is found that the best dimensional stability is achieved when the SOD is set between 75 % and 100 % of the nozzle diameter. Ironing improved the surface finish and the interlayer strength in all instances, with an average improvement of 50 % and 200 %, respectively.