Michael Schiller , Peter Frohn-Sörensen , Florian Schreiber , Daniel Morez , Martin Manns , Bernd Engel
{"title":"Smart design and additive manufacturing of bending tools to improve production flexibility","authors":"Michael Schiller , Peter Frohn-Sörensen , Florian Schreiber , Daniel Morez , Martin Manns , Bernd Engel","doi":"10.1016/j.mfglet.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>For the automotive industry, especially on the part of Tier 1 and Tier 2 suppliers, the future will be about maintaining sovereignty in the form of technology openness and accelerating digitization. The product portfolio, which is generally passed on by OEMs to suppliers for production, often includes body parts that cannot always be manufactured economically with the prevailing production technology. The reason for this is a high diversity of model-variants, which requires smaller batches. To this end, highly flexible large-series production cells for body sheet components that can be scaled in all dimensions are being developed and tested. For the first time, they will make it possible to redesign the process planning in series production on a component-specific basis. The aim is to reduce production costs for new, geometrically different component variants. The basic components of the flexible manufacturing system are, firstly, new flexible forming technologies which have the potential to produce typical vehicle part geometries. Secondly, a process generator develops the corresponding production plan. A digital mapping of the manufacturing processes enables the selection of cost-, efficiency-, flexibility- and resilience-optimized production chains depending on the number of parts. Established manufacturing processes to produce car body components are supplemented in the cell by flexible processes such as 3D swivel bending. As a use case for flexible manufacturing, a concept for Rapid Tooling of 3D swivel bending tools is developed. In the flexible manufacturing system to be developed, a method of a standardized process sequence to produce forming tools within 24 h has been lacking to date. For this purpose, the concept of an automated design is being developed in which a reconfigurable tool body can be sliced into sheet metal stripes The active tool surface is additively manufactured after the tool has been packaged using LMD and adapted to individual requirements. The goal in the application of Rapid Tooling is to reduce lead times and development costs through a largely automated tool design and lead time-optimized manufacturing concept.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 91-102"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324000701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
For the automotive industry, especially on the part of Tier 1 and Tier 2 suppliers, the future will be about maintaining sovereignty in the form of technology openness and accelerating digitization. The product portfolio, which is generally passed on by OEMs to suppliers for production, often includes body parts that cannot always be manufactured economically with the prevailing production technology. The reason for this is a high diversity of model-variants, which requires smaller batches. To this end, highly flexible large-series production cells for body sheet components that can be scaled in all dimensions are being developed and tested. For the first time, they will make it possible to redesign the process planning in series production on a component-specific basis. The aim is to reduce production costs for new, geometrically different component variants. The basic components of the flexible manufacturing system are, firstly, new flexible forming technologies which have the potential to produce typical vehicle part geometries. Secondly, a process generator develops the corresponding production plan. A digital mapping of the manufacturing processes enables the selection of cost-, efficiency-, flexibility- and resilience-optimized production chains depending on the number of parts. Established manufacturing processes to produce car body components are supplemented in the cell by flexible processes such as 3D swivel bending. As a use case for flexible manufacturing, a concept for Rapid Tooling of 3D swivel bending tools is developed. In the flexible manufacturing system to be developed, a method of a standardized process sequence to produce forming tools within 24 h has been lacking to date. For this purpose, the concept of an automated design is being developed in which a reconfigurable tool body can be sliced into sheet metal stripes The active tool surface is additively manufactured after the tool has been packaged using LMD and adapted to individual requirements. The goal in the application of Rapid Tooling is to reduce lead times and development costs through a largely automated tool design and lead time-optimized manufacturing concept.